piperine and cinnamaldehyde

piperine has been researched along with cinnamaldehyde* in 6 studies

Other Studies

6 other study(ies) available for piperine and cinnamaldehyde

ArticleYear
Biofilm and hyphal inhibitory synergistic effects of phytoactives piperine and cinnamaldehyde against Candida albicans.
    Medical mycology, 2022, Aug-10, Volume: 60, Issue:8

    Oral candidiasis, the most common mycotic infection of the human oral cavity is non-life-threatening yet, if untreated, may advance as systemic infections. The ability of Candida albicans to adapt sessile lifestyle imparts resistance to drugs and host immunity. Consequently, due to the limited effectiveness of conventional antifungal treatment, novel therapeutic strategies are required. In the present study, synergistic interaction of phytochemicals, piperine, and cinnamaldehyde against the biofilm and hyphal of C. albicans was evaluated. Minimum inhibitory concentration (MIC) and biofilm inhibitory concentration (BIC) of piperine and cinnamaldehyde against C. albicans were analyzed through microbroth dilution assay and crystal violet staining method, respectively. Combinatorial biofilm and hyphal inhibitory effect were investigated through checkerboard assay. In vitro results were validated through gene expression analysis. BIC of piperine and cinnamaldehyde was determined to be 32 μg/ml and 64 μg/ml, respectively. Interaction between these two phytocomponents was found to be synergistic and six different synergistic antibiofilm combinations were identified. Microscopic analysis of biofilm architecture also evidenced the biofilm and surface adherence inhibitory potential of piperine and cinnamaldehyde combinations. Phenotypic switching between yeast and hyphal morphological forms was influenced by synergistic combinations. qPCR analysis corroborated the results of in vitro activities. nrg1 and trp1, the negative transcriptional regulators of filamentous growth were upregulated whereas other genes that are involved in biofilm formation, filamentous growth, adhesion, etc. were found to be downregulated. These proficient phytochemical combinations provide a new therapeutic avenue for the treatment of biofilm-associated oral candidiasis and to combat the recurrent infections due to antibiotic resistance.

    Topics: Acrolein; Alkaloids; Animals; Antifungal Agents; Benzodioxoles; Biofilms; Candida albicans; Candidiasis, Oral; Humans; Microbial Sensitivity Tests; Piperidines; Polyunsaturated Alkamides

2022
A Comparative Study on the Effect of Acute Pharyngeal Stimulation with TRP Agonists on the Biomechanics and Neurophysiology of Swallow Response in Patients with Oropharyngeal Dysphagia.
    International journal of molecular sciences, 2022, Sep-15, Volume: 23, Issue:18

    Fluid thickening is the main compensatory strategy for patients with oropharyngeal dysphagia (OD) associated with aging or neurological diseases, and there is still no pharmacological treatment. We aimed to compare the effects of increasing bolus viscosity with that of acute stimulation with TRPV1, TRPA1 or TRPM8 agonists on the biomechanics and neurophysiology of swallow response in patients with OD. We retrospectively analyzed seven studies from our laboratory on 329 patients with OD. The effect of increasing shear viscosity up to 3682 mPa·s was compared by videofluoroscopy and pharyngeal sensory evoked potentials (pSEP) with that of adding to the bolus: capsaicin (TRPV1, 150 μM/10 μM), piperine (TRPA1/V1, 1 mM/150 μM), menthol (TRPM8, 1 mM/10 mM), cinnamaldehyde-zinc (TRPA1, 100 ppm−70 mM), citral (TRPA1, 250 ppm) or citral-isopulegol (TRPA1-TRPM8, 250 ppm−200 ppm). Fluid thickening improved the safety of swallow by 80% (p < 0.0001) by delaying bolus velocity by 20.7 ± 7.0% and time to laryngeal vestibule closure (LVC) by 23.1 ± 3.7%. Capsaicin 150μM or piperine 1 mM significantly improved safety of swallow by 50% (p < 0.01) and 57.1% (p < 0.01) by speeding time to LVC by 27.6% (p < 0.001) and 19.5% (p < 0.01) and bolus velocity by 24.8% (p < 0.01) and 16.9% (p < 0.05), respectively. Cinnamaldehyde-zinc shortened the P2 latency of pSEPs by 11.0% (p < 0.01) and reduced N2-P2 amplitude by 35% (p < 0.01). In conclusion, TRPV1 and TRPV1/A1 agonists are optimal candidates to develop new pharmacological strategies to promote the recovery of brain and swallow function in patients with chronic OD.

    Topics: Acrolein; Acyclic Monoterpenes; Alkaloids; Benzodioxoles; Biomechanical Phenomena; Capsaicin; Deglutition; Deglutition Disorders; Humans; Menthol; Piperidines; Polyunsaturated Alkamides; Retrospective Studies; Zinc

2022
Bioactive Phytocompounds: Anti-amyloidogenic Effects Against Hen Egg-White Lysozyme Aggregation.
    The protein journal, 2021, Volume: 40, Issue:1

    Amyloidosis is the process of fibril formation responsible for causing several diseases in the human being that involve protein aggregation such as Alzheimer's, Parkinson's, Huntington's disease, and type II diabetes. Natural phytocompounds such as curcumin shown promising anti-amyloidogenic activity. In the present study, selective phytocompounds such as piperine, cinnamaldehyde, eugenol, and cuminaldehyde present in Piper nigrum L, Cinnamomum zeylanicum Blume, Eugenia caryophyllus Thumb, and Cuminum cyminum L, respectively were analyzed for anti-amyloidogenic activity using hen egg white-lysozyme (HEWL) as a model system. Out of the selected phytocompounds, piperine showed the most significant anti-amyloidogenic activity, as evident from in vitro assays that were validated by in silico molecular docking study. Piperine showed 64.7 ± 3.74% inhibition of amyloid formation at 50 μM concentration, as observed by Thioflavin T assay. Subsequently, the anti-amyloidogenic activity of piperine was further validated by congo red, intrinsic fluorescence assay, and transmission electron microscopy analysis. The in silico molecular binding interaction showed piperine with the highest docking score and glide energy. Piperine was found to be interacting with amyloidogenic region residues and Trp62, the most important residue involved in the amyloidogenesis process. In conclusion, piperine can be used as a positive lead for a potential therapeutic role in targeting diseases involved amyloidogenesis.

    Topics: Acrolein; Alkaloids; Amyloidogenic Proteins; Animals; Benzaldehydes; Benzodioxoles; Benzothiazoles; Binding Sites; Chickens; Cymenes; Eugenol; Fluorescent Dyes; Humans; Molecular Docking Simulation; Muramidase; Phytochemicals; Piperidines; Polyunsaturated Alkamides; Protective Agents; Protein Aggregates; Protein Binding; Protein Interaction Domains and Motifs; Protein Structure, Secondary; Spectrometry, Fluorescence

2021
Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve.
    Biochemical and biophysical research communications, 2013, Apr-26, Volume: 434, Issue:1

    Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC50 values of 1.2 and 1.5mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC50=0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

    Topics: Acrolein; Action Potentials; Acyclic Monoterpenes; Alkaloids; Amides; Animals; Benzodioxoles; Female; Isothiocyanates; Male; Monoterpenes; Neural Conduction; Piperidines; Polyunsaturated Alkamides; Ranidae; Sciatic Nerve; Transient Receptor Potential Channels

2013
[HPLC determination of four components in Tibetan medicine Dangzuo of different Tibetan regions].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2011, Volume: 36, Issue:8

    To develop an HPLC method for determination of gallic acid, hydroxysafflor yellow A, cinnamic aldehyde and piperine in Tibetan medicine Dangzuo, and to compare the content of four active components in Dangzuo of different Tibetan regions.. The separation was carried out on a Waters XTerra RP-C18 column ( 4.6 mm x 250 mm, 5 microm). The mobile phases were methanol and water, all contained 0.1% glacial acetic acid, for gradient elution. The gradient program was as follows: 0-22.5 min, methanol was changed from 5% to 50%; 22.5-40 min, changed to 80% 80:20. The flow rate was 1.0 mL x min(-1). The detection wavelength was 270 nm. The reference wavelength was 500 nm.. The linear ranges of gallic acid, hydroxysafflor yellow A, cinnamic aldehyde and piperine were 0.040-0.640 microg (r = 0.999 8), 0.090-1.440 microg (r = 0.999 9), 0.031-0.500 microg (r = 0.999 9 ) and 0.092-41.477 microg (r = 0.998 9), respectively. The average recoveries (n = 6) were 97.42% (RSD 1.9%), 97.55% (RSD 2.9%), 98.69% (RSD 0.96%) and 96.72% (RSD 4.0%), respectively. The content ranges of gallic acid, hydroxysafflor yellow A, cinnamic aldehyde and piperine in Dangzuo samples of different Tibetan regions were 0.11341.69 mg x g(-1), 0.889-1.51 mg x g(-1), 0.000-40.606 mg x g(-1) and 1.96-2.73 mg x g(-1), respectively.. The method is a simple and effective for quality control of Tibetan medicine Dangzuo.

    Topics: Acrolein; Alkaloids; Benzodioxoles; Chalcone; Chromatography, High Pressure Liquid; Drugs, Chinese Herbal; Gallic Acid; Medicine, Tibetan Traditional; Piperidines; Plant Components, Aerial; Plant Extracts; Polyunsaturated Alkamides; Quality Control; Quinones; Reference Standards; Spectrophotometry, Ultraviolet

2011
Spice active principles as the inhibitors of human platelet aggregation and thromboxane biosynthesis.
    Prostaglandins, leukotrienes, and essential fatty acids, 2009, Volume: 81, Issue:1

    Spice active principles are reported to have anti-diabetic, anti-hypercholesterolemic, antilithogenic, anti-inflammatory, anti-microbial and anti-cancer properties. In our previous report we have shown that spices and their active principles inhibit 5-lipoxygenase and also formation of leukotriene C4. In this study, we report the modulatory effect of spice active principles viz., eugenol, capsaicin, piperine, quercetin, curcumin, cinnamaldehyde and allyl sulphide on in vitro human platelet aggregation. We have demonstrated that spice active principles inhibit platelet aggregation induced by different agonists, namely ADP (50microM), collagen (500microg/ml), arachidonic acid (AA) (1.0mM) and calcium ionophore A-23187 (20microM). Spice active principles showed preferential inhibition of arachidonic acid-induced platelet aggregation compared to other agonists. Among the spice active principles tested, eugenol and capsaicin are found to be most potent inhibitors of AA-induced platelet aggregation with IC50 values of 0.5 and 14.6microM, respectively. The order of potency of spice principles in inhibiting AA-induced platelet aggregation is eugenol>capsaicin>curcumin>cinnamaldehyde>piperine>allyl sulphide>quercetin. Eugenol is found to be 29-fold more potent than aspirin in inhibiting AA-induced human platelet aggregation. Eugenol and capsaicin inhibited thromboxane B2 (TXB2) formation in platelets in a dose-dependent manner challenged with AA apparently by the inhibition of the cyclooxygenase (COX-1). Eugenol-mediated inhibition of platelet aggregation is further confirmed by dose-dependent decrease in malondialdehyde (MDA) in platelets. Further, eugenol and capsaicin inhibited platelet aggregation induced by agonists-collagen, ADP and calcium ionophore but to a lesser degree compared to AA. These results clearly suggest that spice principles have beneficial effects in modulating human platelet aggregation.

    Topics: Acrolein; Adenosine Diphosphate; Alkaloids; Allyl Compounds; Arachidonic Acid; Benzodioxoles; Calcimycin; Capsaicin; Collagen Type III; Curcumin; Eugenol; Humans; Malondialdehyde; Piperidines; Platelet Aggregation; Platelet Aggregation Inhibitors; Polyunsaturated Alkamides; Quercetin; Spices; Sulfides; Thromboxanes

2009