piperine has been researched along with chelerythrine* in 2 studies
2 other study(ies) available for piperine and chelerythrine
Article | Year |
---|---|
Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against Trypanosoma brucei brucei.
The flagellate Trypanosoma brucei causes sleeping sickness in humans and nagana in animals. Only a few drugs are registered to treat trypanosomiasis, but those drugs show severe side effects. Also, because some pathogen strains have become resistant, new strategies are urgently needed to combat this parasitic disease. An underexplored possibility is the application of combinations of several trypanocidal agents, which may potentiate their trypanocidal activity in a synergistic fashion. In this study, the potential synergism of mutual combinations of bioactive alkaloids and alkaloids with a membrane-active steroidal saponin, digitonin, was explored with regard to their effect on T. b. brucei. Alkaloids were selected that affect different molecular targets: berberine and chelerythrine (intercalation of DNA), piperine (induction of apoptosis), vinblastine (inhibition of microtubule assembly), emetine (intercalation of DNA, inhibition of protein biosynthesis), homoharringtonine (inhibition of protein biosynthesis), and digitonin (membrane permeabilization and uptake facilitation of polar compounds). Most combinations resulted in an enhanced trypanocidal effect. The addition of digitonin significantly stimulated the activity of almost all alkaloids against trypanosomes. The strongest effect was measured in a combination of digitonin with vinblastine. The highest dose reduction indexes (DRI) were measured in the two-drug combination of digitonin or piperine with vinblastine, where the dose of vinblastine could be reduced 9.07-fold or 7.05-fold, respectively. The synergistic effects of mutual combinations of alkaloids and of alkaloids with digitonin present a new avenue to treat trypanosomiasis but one which needs to be corroborated in future animal experiments. Topics: Alkaloids; Animals; Benzodioxoles; Benzophenanthridines; Berberine; Digitonin; Drug Combinations; Drug Synergism; Emetine; Harringtonines; Homoharringtonine; Models, Theoretical; Piperidines; Polyunsaturated Alkamides; Trypanocidal Agents; Trypanosoma brucei brucei; Vinblastine | 2015 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD's pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin-chelerythrine-acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs. Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |