piperine has been researched along with capsazepine* in 8 studies
8 other study(ies) available for piperine and capsazepine
Article | Year |
---|---|
TRPV1 agonist piperine but not olvanil enhances glutamatergic spontaneous excitatory transmission in rat spinal substantia gelatinosa neurons.
We examined the effects of TRPV1 agonists olvanil and piperine on glutamatergic spontaneous excitatory transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices with the whole-cell patch-clamp technique. Bath-applied olvanil did not affect the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC), and unchanged holding currents at -70 mV. On the other hand, superfusing piperine reversibly and concentration-dependently increased sEPSC frequency (half-maximal effective concentration: 52.3 μM) with a minimal increase in its amplitude. This sEPSC frequency increase was almost repetitive at an interval of more than 20 min. Piperine at a high concentration produced an inward current in some neurons. The facilitatory effect of piperine was blocked by TRPV1 antagonist capsazepine. It is concluded that piperine but not olvanil activates TRPV1 channels in the central terminals of primary-afferent neurons, resulting in an increase in the spontaneous release of l-glutamate onto SG neurons. Topics: Alkaloids; Animals; Benzodioxoles; Capsaicin; Excitatory Amino Acid Agents; Glutamates; Neurons; Patch-Clamp Techniques; Piperidines; Polyunsaturated Alkamides; Rats; Substantia Gelatinosa; Synaptic Transmission; TRPV Cation Channels | 2011 |
In vitro TRPV1 activity of piperine derived amides.
A series of natural and synthetic piperine amides were evaluated for activity on the human TRPV1 expressed in HEK293 cells. The agonistic effect of piperine amides was mainly dependent on the length of the carbon chain. Structural changes of double bonds and stereochemistry in the aliphatic chain of these compounds did not change their potency or efficacy, indicating that increased rigidity or planarity of the piperine structure does not affect the activity. The opening of the methylenedioxy ring or changes in the heterocyclic ring of the piperine molecule reduced or abolished activity. Furthermore, inactive compounds did not display functional antagonistic activity. Topics: Alkaloids; Amides; Benzodioxoles; Capsaicin; Cell Line; Dose-Response Relationship, Drug; Humans; Molecular Structure; Piperidines; Polyunsaturated Alkamides; Spectrometry, Fluorescence; TRPV Cation Channels | 2010 |
Pharmacologic antagonism of the oral aversive taste-directed response to capsaicin in a mouse brief access taste aversion assay.
Chemosensory signaling by the tongue is a primary determinant of ingestive behavior and is mediated by specific interactions between tastant molecules and G protein-coupled and ion channel receptors. The functional relationship between tastant and receptor should be amenable to pharmacologic methods and manipulation. We have performed a pharmacologic characterization of the taste-directed licking of mice presented with solutions of capsaicin and other transient receptor potential vanilloid-1 (TRPV1) agonists using a brief access taste aversion assay. Dose-response functions for lick-rate suppression were established for capsaicin (EC(50) = 0.5 microM), piperine (EC(50) = 2 muM), and resiniferatoxin (EC(50) = 0.02 microM). Little or no effect on lick rate was observed in response to the full TRPV1 agonist olvanil. Capsaicin lick rates of wild-type and transient receptor potential melastatin-5 (TRPM5) knockout mice were equivalent, indicating that TRPM5, a critical component of aversive signaling for many bitter tastants, did not contribute to the capsaicin taste response. The selective TRPV1 antagonists N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (10 microM) and (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (AMG9810) (10 microM) effectively blocked capsaicin- and piperine-mediated lick suppression. However, (E)-3-(4-chlorophenyl)-N-(3-methoxyphenyl)-N-phenylprop-2-enamide (SB 366791) and capsazepine, also TRPV1 antagonists, were without effect at test concentrations of up to 30 and 100 microM, respectively. Our results demonstrate that TRPV1-mediated oral aversiveness presents a pharmacologic profile differing from what has been reported previously for TRPV1 pain signaling and, furthermore, that aversive tastes can be evaluated and controlled pharmacologically. Topics: Acrylamides; Administration, Oral; Alkaloids; Anilides; Animals; Avoidance Learning; Benzodioxoles; Bridged Bicyclo Compounds, Heterocyclic; Capsaicin; Cinnamates; Diterpenes; Dose-Response Relationship, Drug; Female; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Piperidines; Polyunsaturated Alkamides; Pyrazines; Pyridines; Taste; TRPM Cation Channels; TRPV Cation Channels | 2010 |
TRPV1 is involved in stretch-evoked contractile changes in the rat autonomous bladder model: a study with piperine, a new TRPV1 agonist.
Vanilloids like capsaicin and resiniferatoxin (RTX) have been used for more than a decade in the treatment of neurogenic detrusor overactivity. Recently, the vanilloid molecule piperine (PIP) has been shown to have similar pharmacological properties as these drugs. In this study, we looked at PIP-effects on autonomous bladder contractile activity, with particular interest for its selectivity for the transient receptor potential channel 1 (TRPV1) receptor. Additionally, we studied the role of TRPV1 in volume-induced contractile changes using selective and non-selective TRPV1 antagonists.. The acute and prolonged effects of PIP were studied on rat bladders. Each bladder was excised and placed in a heated organ bath, where intravesical pressures were measured. In acute experiments, PIP was added directly to the bathing solution. For prolonged effects, animals were pre-treated intravesically with vehicle (ethanol 5%) or PIP (10(-4) M) and sacrificed 72 hr later. The effects of selective (capsazepine (CZP)) and non-selective (ruthenium red (RR)) TRPV1 antagonists on volume-evoked contractile parameters were also studied.. Acute administration of PIP 10(-4) M significantly increased amplitude of bladder contractions (P < 0.05). These effects were significantly antagonized (P < 0.05) by the TRPV1-selective antagonist CZP (10(-5) M) and the non-selective TRP-antagonist RR (10(-5) M). Intravesical pre-treatment with PIP induced shorter contractions with more periods of non-activity (P < 0.05) compared to controls. Inhibition of TRPV1 with CZP and RR significantly reduced the volume-evoked rise in contractile amplitude in isolated bladders (P < 0.05).. We found evidence for acute and prolonged effects of PIP on bladder contractility, which seem to be mediated through TRPV1. Furthermore, we found evidence for involvement of TRPV1 in afferent signaling of mechanical stimuli. Topics: Alkaloids; Animals; Benzodioxoles; Capsaicin; Carbachol; Cholinergic Agonists; Dose-Response Relationship, Drug; Female; Indicators and Reagents; Mechanotransduction, Cellular; Muscle Contraction; Piperidines; Polyunsaturated Alkamides; Pressure; Rats; Rats, Wistar; Ruthenium Red; Stress, Mechanical; TRPV Cation Channels; Urinary Bladder | 2007 |
Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1).
1. We have characterised the effects of piperine, a pungent alkaloid found in black pepper, on the human vanilloid receptor TRPV1 using whole-cell patch-clamp electrophysiology. 2. Piperine produced a clear agonist activity at the human TRPV1 receptor yielding rapidly activating whole-cell currents that were antagonised by the competitive TRPV1 antagonist capsazepine and the non-competitive TRPV1 blocker ruthenium red. 3. The current-voltage relationship of piperine-activated currents showed pronounced outward rectification (25+/-4-fold between -70 and +70 mV) and a reversal potential of 0.0+/-0.4 mV, which was indistinguishable from that of the prototypical TRPV1 agonist capsaicin. 4. Although piperine was a less potent agonist (EC50=37.9+/-1.9 microM) than capsaicin (EC50=0.29+/-0.05 microM), it demonstrated a much greater efficacy (approximately two-fold) at TRPV1. 5. This difference in efficacy did not appear to be related to the proton-mediated regulation of the receptor since a similar degree of potentiation was observed for responses evoked by piperine (230+/-20%, n=11) or capsaicin (284+/-32%, n=8) upon acidification to pH 6.5. 6. The effects of piperine upon receptor desensitisation were also unable to explain this effect since piperine resulted in more pronounced macroscopic desensitisation (t(1/2)=9.9+/-0.7 s) than capsaicin (t(1/2)>20 s) and also caused greater tachyphylaxis in response to repetitive agonist applications. 7. Overall, our data suggest that the effects of piperine at human TRPV1 are similar to those of capsaicin except for its propensity to induce greater receptor desensitisation and, rather remarkably, exhibit a greater efficacy than capsaicin itself. These results may provide insight into the TRPV1-mediated effects of piperine on gastrointestinal function. Topics: Alkaloids; Benzodioxoles; Capsaicin; Cell Line; Humans; Hydrogen-Ion Concentration; Patch-Clamp Techniques; Piper nigrum; Piperidines; Polyunsaturated Alkamides; Receptors, Drug; Ruthenium Red; Structure-Activity Relationship | 2005 |
Effect of piperine, the active ingredient of black pepper, on intestinal secretion in mice.
We have investigated the effect piperine on castor oil-stimulated fluid accumulation in the mouse small intestine. Piperine (2.5-20 mg/kg, i.p.) dose-dependently reduced castor oil-induced intestinal fluid accumulation. The inhibitory effect of piperine (10 mg/kg i.p.) was strongly attenuated in capsaicin (75 mg/kg in total, s.c.)-treated mice but it was not modified by the vanilloid receptor antagonist capsazepine (30 mg/kg i.p.). Pretreatment of mice with hexamethonium (1 mg/kg i.p.), naloxone (2 mg/kg i.p.), yohimbine (1 mg/kg i.p.) or the cannabinoid CB(1) receptor antagonist SR141716A (0.3 mg/kg i.p.) did not modify the inhibitory effect of piperine (10 mg/kg i.p.). These results suggest that piperine reduces castor oil-induced fluid secretion with a mechanism involving capsaicin-sensitive neurons, but not capsazepine-sensitive vanilloid receptors. Topics: Alkaloids; Animals; Anti-Ulcer Agents; Benzodioxoles; Capsaicin; Castor Oil; Dose-Response Relationship, Drug; Drug Interactions; Injections, Intraperitoneal; Intestinal Secretions; Intestine, Small; Male; Mice; Mice, Inbred ICR; Organ Size; Piperidines; Polyunsaturated Alkamides | 2002 |
Relaxant effect of capsazepine in the isolated rat ileum.
We have evaluated the effect of the vanilloid receptor agonists resiniferatoxin (RTX), capsaicin and piperine and of the vanilloid receptor antagonist capsazepine on the resting tone in the isolated rat ileum. Capsazepine (10(-8)-3 x 10(-5) M) produced a concentration-related relaxation (8 +/-3%-49 +/-3%) of the rat ileum. By contrast RTX (up to 10(-8) M), capsaicin (up to 10(-6) M) and piperine (up to 10(-5) M) were without effect. Pre-treatment with capsaicin [either in vivo (50 mg/kg s.c.) or in vitro (10(-6) M)] did not modify the inhibitory effect of capsazepine. The L-type Ca2+ channel antagonist nifedipine (10(-6) M), but not the N-type Ca2+ channel antagonist omega-conotoxin GVIA (3 x 10(-8) M) nor the Na+ channel blocker tetrodotoxin (3 x 10(-7) M), counteracted the inhibitory effect of capsazepine. The NK1 receptor antagonist SR 140333 (10(-7) M), the NK2 receptor antagonist SR 48968 (10(-6) M), the NK3 receptor antagonist SR 142801 (10(-7) M), atropine (10(-6) M), hexamethonium (10(-4) M), phentolamine (10(-6) M) plus propranolol (10(-6) M), N(G)-nitro- L-arginine methyl ester ( L-NAME 3 x 10(-4) M), apamin (10(-7) M), methysergide (10(-6) M), the calcitonin gene-related peptide (CGRP) antagonist hCGRP 8-37 (1.5 x 10(-6) M), the VIP antagonist hGRF 1-29 (10(-5) M) did not modify the inhibitory effect of capsazepine. Capsazepine (2.5-40 mg/kg) also decreased upper gastrointestinal transit in vivo. It is concluded that the vanilloid antagonist capsazepine has a direct relaxing effect on rat intestinal smooth muscle which could involve L-type calcium channels. We found no evidence to suggest that capsazepine is antagonizing an endogenous vanilloid. Topics: Alkaloids; Animals; Benzodioxoles; Calcium Channels, L-Type; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Gastrointestinal Transit; Ileum; In Vitro Techniques; Male; Muscle Relaxation; Muscle, Smooth; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Drug | 2002 |
Enhancement of rat trigeminal ganglion neuron responses to piperine in a low-pH environment and block by capsazepine.
Both trigeminal and spinal ganglion neurons show a strong potentiation of responses to the irritant capsaicin in an acidic environment. The present study revealed that there is also a strong interaction between protons and piperine, another vanilloid irritant. We studied the mechanism of the interaction between protons and piperine. Whole-cell patch clamp recordings were performed on cultured adult rat trigeminal ganglion (TG) neurons voltage-clamped near their resting membrane potential (-60 mV). Piperine (10 microM) caused a sustained net inward current associated with either an increase or decrease in membrane conductance. When protons and piperine were co-applied, the membrane currents evoked in piperine-sensitive TG neurons far exceeded the algebraic sum of the responses to the two stimuli applied in isolation. Capsazepine blocked the response of TG neurons to piperine at both physiological and acidic pH. In the presence of capsazepine, responses to the mixture of piperine and protons resembled the response to the low pH stimulus applied alone. Capsazepine had no effect on the sustained proton-induced current. These findings suggest that protons enhance the piperine current by altering the vanilloid receptor/channel complex or increasing the length constant of the space clamp. Topics: Alkaloids; Animals; Anticonvulsants; Benzodioxoles; Binding, Competitive; Capsaicin; Female; Hydrogen-Ion Concentration; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Piperidines; Polyunsaturated Alkamides; Protons; Rats; Rats, Sprague-Dawley; Trigeminal Ganglion | 1997 |