piperine and anandamide

piperine has been researched along with anandamide* in 1 studies

Other Studies

1 other study(ies) available for piperine and anandamide

ArticleYear
Effect of vanilloid drugs on gastrointestinal transit in mice.
    British journal of pharmacology, 2001, Volume: 132, Issue:7

    1. We have studied the effect of capsaicin, piperine and anandamide, drugs which activate vanilloid receptors and capsazepine, a vanilloid receptor antagonist, on upper gastrointestinal motility in mice. 2. Piperine (0.5 - 20 mg kg(-1) i.p.) and anandamide (0.5 - 20 mg kg(-1) i.p.), dose-dependently delayed gastrointestinal motility, while capsaicin (up to 3 mg kg(-1) i.p.) was without effect. Capsazepine (15 mg kg(-1) i.p.) neither per se affected gastrointestinal motility nor did it counteract the inhibitory effect of both piperine (10 mg kg(-1)) and anandamide (10 mg kg(-1)). 3. A per se non effective dose of SR141716A (0.3 mg kg(-1) i.p.), a cannabinoid CB(1) receptor antagonist, counteracted the inhibitory effect of anandamide (10 mg kg(-1)) but not of piperine (10 mg kg(-1)). By contrast, the inhibitory effect of piperine (10 mg kg(-1)) but not of anandamide (10 mg kg(-1)) was strongly attenuated in capsaicin (75 mg kg(-1) in total, s.c.)-treated mice. 4. Pretreatment of mice with N(G)-nitro-L-arginine methyl ester (25 mg kg(-1) i.p.), yohimbine (1 mg kg(-1), i.p.), naloxone (2 mg kg(-1) i.p.), or hexamethonium (1 mg kg(-1) i.p.) did not modify the inhibitory effect of both piperine (10 mg kg(-1)) and anandamide (10 mg kg(-1)). 5. The present study indicates that the vanilloid ligands anandamide and piperine, but not capsaicin, can reduce upper gastrointestinal motility. The effect of piperine involves capsaicin-sensitive neurones, but not vanilloid receptors, while the effect of anandamide involves cannabinoid CB(1), but not vanilloid receptors.

    Topics: Alkaloids; Animals; Arachidonic Acids; Benzodioxoles; Capsaicin; Dose-Response Relationship, Drug; Endocannabinoids; Gastrointestinal Transit; Hexamethonium; Male; Mice; Mice, Inbred ICR; Naloxone; NG-Nitroarginine Methyl Ester; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Drug; Rimonabant; Yohimbine

2001