piperidines has been researched along with tetrahydrocannabivarin-9* in 7 studies
1 review(s) available for piperidines and tetrahydrocannabivarin-9
Article | Year |
---|---|
CB₁-independent mechanisms of Δ⁹-THCV, AM251 and SR141716 (rimonabant).
The potential beneficial therapeutic effects of cannabinoid CB₁ receptor antagonists or partial agonists have driven drug discovery and development efforts and have led to clinical candidates. It is generally assumed that these compounds are CB₁ 'selective' and produce their effects exclusively via CB₁ receptors.. A literature search was conducted of preclinical publications containing information about non-CB₁ receptor pharmacology of these agents. The information was summarized and evaluated from the perspective of contribution to a fuller understanding of this aspect of these compounds.. A number of recent studies have revealed that these compounds have CB₁-independent pharmacological actions. We highlight the evidence regarding effects produced in cells lacking CB₁ receptors, effects on neuronal membranes from CB₁ receptor-deficient mutant KO 'knockout' mice and affinity for μ-opioid receptors.. CB₁ 'selective' antagonists and partial agonists have been studied for their anorexigenic and other potential therapeutic uses. An awareness of CB₁-independent mechanism(s) of these agents might contribute to a better understanding of the pharmacologic and toxicologic profiles of these agents. Topics: Animals; Anti-Obesity Agents; Appetite Depressants; Dronabinol; Humans; Ligands; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, Opioid, mu; Rimonabant | 2012 |
6 other study(ies) available for piperidines and tetrahydrocannabivarin-9
Article | Year |
---|---|
Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ(9) -tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats.
The cannabinoid 1 (CB1 ) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ(9) -tetrahydrocannabivarin (THCV), for their ability to produce these behavioural effect characteristics of CB1 receptor inverse agonism in rats.. In experiment 1, we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour) in the same manner as SR and AM251. In experiment 2, we investigated the potential of THCV and CBDV to enhance conditioned gaping produced by a toxin in the same manner as CB1 receptor inverse agonists.. SR (10 and 20 mg·kg(-1) ) and AM251 (10 mg·kg(-1) ) produced conditioned gaping; however, THCV (10 or 20 mg·kg(-1) ) and CBDV (10 or 200 mg·kg(-1) ) did not. At a subthreshold dose for producing nausea, SR (2.5 mg·kg(-1) ) enhanced lithium chloride (LiCl)-induced conditioned gaping, whereas Δ(9) -tetrahydrocannabinol (THC, 2.5 and 10 mg·kg(-1) ), THCV (2.5 or 10 mg·kg(-1) ) and CBDV (2.5 or 200 mg·kg(-1) ) did not; in fact, THC (2.5 and 10 mg·kg(-1) ), THCV (10 mg·kg(-1) ) and CBDV (200 mg·kg(-1) ) suppressed LiCl-induced conditioned gaping, suggesting anti-nausea potential.. The pattern of findings indicates that neither THCV nor CBDV produced a behavioural profile characteristic of CB1 receptor inverse agonists. As well, these compounds may have therapeutic potential in reducing nausea. Topics: Animals; Behavior, Animal; Cannabinoid Receptor Agonists; Cannabinoids; Disease Models, Animal; Dronabinol; Drug Partial Agonism; Lithium Chloride; Male; Nausea; Phytochemicals; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant | 2013 |
Effect of chronic exposure to rimonabant and phytocannabinoids on anxiety-like behavior and saccharin palatability.
The acute effects of cannabinoid compounds have been investigated in animal models of anxiety-like behavior and palatability processing. However, the chronic effects of cannabinoids in such models are poorly understood. Experiment 1 compared the effects of both acute and chronic (14 days) exposure to the CB(1) receptor inverse agonist/antagonist, rimonabant, and the cannabis-derived CB(1) receptor neutral antagonist, tetrahydrocannabivarin (THCV), on: 1) time spent in the open, lit box in the Light-Dark (LD) immersion model of anxiety-like behavior and 2) saccharin hedonic reactions in the taste reactivity (TR) test of palatability processing. Experiment 2 compared the effects of chronic administration of cannabis-derived Δ(9)-tetrahydrocannabinol (Δ(9)-THC), cannabidiol (CBD) and cannabigerol (CBG) in these models. Tests were administered on Days 1, 7 and 14 of drug administration. In Experiment 1, rimonabant, but not THCV, produced an anxiogenic-like reaction in the LD immersion test and reduced saccharin palatability in the TR test; both of these effects occurred acutely and were not enhanced by chronic exposure. In Experiment 2, Δ(9)-THC also produced an acute anxiogenic-like reaction in the LD immersion test, without enhancement by chronic exposure. However, Δ(9)-THC enhanced saccharin palatability in the TR test on Day 1 of drug exposure only. CBD and CBG did not modify anxiety-like responding, but CBG produced a weak enhancement of saccharin palatability on Day 1 only. The results suggest that the anxiogenic-like reactions and the suppression of hedonic responding produced by rimonabant, are mediated by inverse agonism of the CB(1) receptor and these effects are not enhanced with chronic exposure. Topics: Animals; Anxiety; Behavior, Animal; Cannabidiol; Cannabinoid Receptor Antagonists; Cannabinoids; Disease Models, Animal; Dronabinol; Drug Administration Schedule; Drug Inverse Agonism; Male; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Rimonabant; Saccharin; Taste; Taste Perception | 2013 |
Δ⁹-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats.
We assessed the anticonvulsant potential of the phytocannabinoid Δ⁹-tetrahydrocannabivarin (Δ⁹-THCV) by investigating its effects in an in vitro piriform cortex (PC) brain slice model of epileptiform activity, on cannabinoid CB1 receptor radioligand-binding assays and in a generalized seizure model in rats.. Δ⁹-THCV was applied before (10 μm Δ⁹-THCV) or during (10-50 μm Δ⁹-THCV) epileptiform activity induced by Mg²(+) -free extracellular media in adult rat PC slices and measured using multielectrode array (MEA) extracellular electrophysiologic techniques. The actions of Δ⁹-THCV on CB1 receptors were examined using [³H]SR141716A competition binding and [³⁵S]GTPγS assays in rat cortical membranes. Effects of Δ⁹-HCV (0.025-2.5 mg/kg) on pentylenetetrazole (PTZ)-induced seizures in adult rats were also assessed.. After induction of stable spontaneous epileptiform activity, acute Δ⁹ -THCV application (≥ 20 μm) significantly reduced burst complex incidence and the amplitude and frequency of paroxysmal depolarizing shifts (PDSs). Furthermore, slices pretreated with 10 μm Δ⁹-THCV prior to induction of epileptiform activity exhibited significantly reduced burst complex incidence and PDS peak amplitude. In radioligand-binding experiments, Δ⁹-THCV acted as a CB1 receptor ligand, displacing 0.5 nm [³H]SR141716A with a Ki∼290 nm, but exerted no agonist stimulation of [³⁵S]GTPγS binding. In PTZ-induced seizures in vivo, 0.25 mg/kg Δ⁹-THCV significantly reduced seizure incidence.. These data demonstrate that Δ⁹-THCV exerts antiepileptiform and anticonvulsant properties, actions that are consistent with a CB1 receptor-mediated mechanism and suggest possible therapeutic application in the treatment of pathophysiologic hyperexcitability states. Topics: Animals; Cerebral Cortex; Competitive Bidding; Disease Models, Animal; Dronabinol; Drug Interactions; Epilepsy; Evoked Potentials; Female; Guanosine 5'-O-(3-Thiotriphosphate); In Vitro Techniques; Male; Pentylenetetrazole; Phosphorus Isotopes; Piperidines; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Rimonabant | 2010 |
Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice.
Obesity is a severe health problem in the modernized world and understanding the central nervous mechanisms underlying food-seeking behaviour and reward are at the forefront of medical research. Cannabinoid receptors have proven an efficient target to suppress hunger and weight gain by their pharmacological inactivation.. A standard fasted protocol and a novel long-term home-cage observation system with free-feeding animals were used to assess the feeding behaviour of mice treated with the CB1 antagonist AM251. Similarly, the effects of the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV), which behaves like a CB1 antagonist, were also determined in free-feeding animals.. AM251 suppressed food intake and weight gain in fasted and non-fasted animals. The suppression of food intake by AM251 (10 mg.kg-1) endured for a period of 6-8 h when administered acutely, and was continuous when injected for four consecutive days. Pure Delta9-THCV also induced hypophagia and weight reduction at doses as low as 3 mg.kg-1. No rebound was observed on the following day with all drug groups returning to normal activity and feeding regimes. However, a Delta9-THCV-rich cannabis-extract failed to suppress food intake and weight gain, possibly due to residual Delta9-tetrahydrocannabinol (Delta9-THC) in the extract. This Delta9-THC effect was overcome by the co-administration of cannabidiol.. The data strongly suggest (i) the long-term home-cage observation system is a sensitive and obesity-relevant tool, and (ii) the phytocannabinoid Delta9-THCV is a novel compound with hypophagic properties and a potential treatment for obesity Topics: Animals; Appetite Depressants; Cannabinoid Receptor Antagonists; Dronabinol; Eating; Fasting; Feeding Behavior; Male; Mice; Mice, Inbred C57BL; Piperidines; Pyrazoles; Solvents; Weight Gain | 2009 |
The phytocannabinoid Delta(9)-tetrahydrocannabivarin modulates inhibitory neurotransmission in the cerebellum.
The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS.. Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro.. The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB(1) receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide.. We show for the first time that Delta(9)-THCV acts as a functional CB(1) receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB(1) receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV- and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition. Topics: Animals; Benzoxazines; Bicuculline; Cannabinoids; Cerebellum; Dronabinol; Electrophysiology; Excitatory Postsynaptic Potentials; GABA Antagonists; gamma-Aminobutyric Acid; In Vitro Techniques; Male; Mice; Morpholines; Naphthalenes; Patch-Clamp Techniques; Piperidines; Purkinje Cells; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Synapses; Synaptic Transmission | 2008 |
Effects of Delta9-tetrahydrocannabivarin on [35S]GTPgammaS binding in mouse brain cerebellum and piriform cortex membranes.
We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays.. Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated.. Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity.. Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding. Topics: Animals; Benzoxazines; Cannabinoids; Cerebellum; Data Interpretation, Statistical; Dronabinol; Electrophysiology; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); In Vitro Techniques; Kinetics; Membranes; Mice; Morpholines; Naphthalenes; Olfactory Pathways; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1 | 2008 |