piperidines has been researched along with tenocyclidine* in 31 studies
31 other study(ies) available for piperidines and tenocyclidine
Article | Year |
---|---|
Qualitative GC-MS assessment of TCP and TAMORF elimination in rats.
Nerve agents are highly toxic organophosphorus (OP) compounds. They inhibit acetylcholinesterase (AChE), an enzyme that hydrolyses acetycholine (ACh) in the nervous system. Pathophysiological changes caused by OP poisonings are primarily the consequence of surplus ACh on cholinergic receptors and in the central nervous system. Standard treatment of OP poisoning includes combined administration of carbamates, atropine, oximes and anticonvulsants. In order to improve therapy, new compounds have been synthesised and tested. Tenocyclidine (TCP) and its adamantane derivative 1-[2-(2-thienyl)-2-adamantyl] morpholine (TAMORF) have shown interesting properties against soman poisoning. In this study, we developed a qualitative GC-MS method to measure elimination of TCP and TAMORF through rat urine in order to learn more about the mechanisms through which TCP protects an organism from OP poisoning and to determine the duration of this protective effect. GC-MS showed that six hours after treatment with TCP, rat urine contained only its metabolite 1-thienylcyclohexene, while urine of rats treated with TAMORF contained both TAMORF and its metabolites. Topics: Adamantane; Animals; Gas Chromatography-Mass Spectrometry; Male; Morpholines; Organophosphate Poisoning; Phencyclidine; Piperidines; Rats; Rats, Wistar; Thiophenes | 2010 |
Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency.
Reversible methylation of histone tails serves as either a positive signal recognized by transcriptional assemblies or a negative signal that result in repression. Invading viral pathogens that depend upon the host cell's transcriptional apparatus are also subject to the regulatory impact of chromatin assembly and modifications. Here we show that infection by the alpha-herpesviruses, herpes simplex virus (HSV) and varicella zoster virus (VZV), results in the rapid accumulation of chromatin bearing repressive histone H3 Lys9 methylation. To enable expression of viral immediate early (IE) genes, both viruses use the cellular transcriptional coactivator host cell factor-1 (HCF-1) to recruit the lysine-specific demethylase-1 (LSD1) to the viral immediate early promoters. Depletion of LSD1 or inhibition of its activity with monoamine oxidase inhibitors (MAOIs) results in the accumulation of repressive chromatin and a block to viral gene expression. As HCF-1 is a component of the Set1 and MLL1 histone H3 Lys4 methyltransferase complexes, it thus coordinates modulation of repressive H3 Lys9 methylation levels with addition of activating H3 Lys4 trimethylation marks. Strikingly, MAOIs also block the reactivation of HSV from latency in sensory neurons, indicating that the HCF-1 complex is a crucial component of the reactivation mechanism. The results support pharmaceutical control of histone modifying enzymes as a strategy for controlling herpesvirus infections. Topics: Animals; Cell Line, Transformed; Chromatin Immunoprecipitation; DNA Replication; Enzyme Activation; Ganglia; Gene Expression Regulation, Viral; Green Fluorescent Proteins; Herpesvirus 1, Human; Herpesvirus 3, Human; Histone Demethylases; Histone Methyltransferases; Histone-Lysine N-Methyltransferase; Host Cell Factor C1; Humans; Lysine; Mice; Monoamine Oxidase Inhibitors; Mutation; Neurons; Pargyline; Phencyclidine; Piperidines; Promoter Regions, Genetic; Reaction Time; RNA, Small Interfering; Simplexvirus; Thiophenes; Time Factors; Transfection; Virus Replication | 2009 |
Tenocyclidine treatment in soman-poisoned rats--intriguing results on genotoxicity versus protection.
This study aimed to evaluate the antidotal potency of tenocyclidine (TCP) that probably might protect acetylcholinesterase (AChE) in the case of organophosphate poisoning. TCP was tested alone as a pretreatment or in combination with atropine as a therapy in rats poisoned with (1/4) and (1/2) of LD(50) of soman. Possible genotoxic effects of TCP in white blood cells and brain tissue were also studied. Results were compared with previous findings on the adamantyl tenocyclidine derivative TAMORF. TCP given alone as pretreatment, 5 min before soman, seems to be superior in the protection of cholinesterase (ChE) catalytic activity in the plasma than in brain, especially after administration of the lower dose of soman. Plasma activities of the enzyme after a joint treatment with TCP and soman were significantly increased at 30 min (P<0.001) and 24 h (P=0.0043), as compared to soman alone. TCP and atropine, given as therapy, were more effective than TCP administered alone as a pretreatment. The above therapy significantly increased activities of the enzyme at 30 min (P=0.046) and 24 h (P<0.001), as compared to controls treated with (1/4) LD(50) of soman alone. Using the alkaline comet assay, acceptable genotoxicity of TCP was observed. However, the controversial role of TCP in brain protection of soman-poisoned rats should be studied further. Topics: Acetylcholinesterase; Animals; Brain; Cholinesterase Inhibitors; Cholinesterase Reactivators; Cholinesterases; Comet Assay; Leukocytes; Male; Models, Chemical; Mutagens; Phencyclidine; Piperidines; Rats; Rats, Wistar; Soman; Thiophenes | 2008 |
Structure-activity relationships of pentacycloundecylamines at the N-methyl-d-aspartate receptor.
Prompted by our interest in neuroprotective agents with multiple mechanisms of action, we assessed the structure-activity relationship of a series of pentacycloundecylamine derivatives previously shown to have both L-type calcium channel blocking activity and N-methyl-d-aspartate receptor (NMDAR) antagonistic activity. We utilized a functional assay to measure NMDAR channel block using (45)Ca(2+) influx into synaptoneurosomes. The cage amine 8-benzylamino-8,11-oxapentacyclo[5.4.0.0(2,6). 0(3,10).0(5,9)]undecane (NPG1-01) proved to be the most potent experimental compound with an IC(50) of 2.98microM, while 8-amino-pentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecane had the next most potent IC(50) of 4.06microM. Increasing the polycyclic cage size of NGP1-01 from a pentacycloundecane to a tridecane cage structure, but retaining the N-benzyl moiety decreased potency 10-fold, indicating a limitation on the volume of the cage that can be accommodated in the channel binding site. In the presence of NGP1-01, NMDA/glycine-induced maximal (45)Ca(2+) influx was attenuated by 34% with an insignificant effect on agonist potency. These results are consistent with uncompetitive antagonism for this group of compounds. Radioligand binding studies with [(3)H]MK-801 or [(3)H]TCP showed little or no displacement of these ligands by pentacycloundecylamines, suggesting that the latter compounds bind to a unique site in the NMDAR channel. The pentacycloundecylamines tested represent a novel group of NMDAR antagonists that have potential as therapeutic agents for neurodegenerative diseases including Parkinson's and Alzheimer's disease. Topics: Amines; Animals; Brain; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Ion Channels; Male; Mice; Mice, Inbred ICR; Models, Molecular; Phencyclidine; Piperidines; Radioligand Assay; Receptors, N-Methyl-D-Aspartate; Structure-Activity Relationship; Synaptosomes; Thiophenes | 2007 |
In vitro biological efficiency of tenocyclidine-TCP and its adamantane derivative TAMORF.
Tenocyclidine-TCP showing a broad spectrum of pharmacological activity including antidotal effect in organophosphorus compounds poisoning, radioprotective and anticancer effects. We investigated in vitro interactions of TCP and its adamantane derivative--TAMORF with human erythrocyte acetylcholinesterase (AChE). Moreover, their genotoxicity and radioprotective activity on human white blood cells were studied using the alkaline comet assay, viability testing and the analysis of the structural chromosome aberrations. The tested compounds were found to be weak inhibitors of AChE, for TCP IC(50)=1 x 10(-5)M and for TAMORF IC(50)>1 x 10(-3)M, without reactivating and protective effects on AChE inhibited by soman. Results suggest that TCP modified by the replacement of the cyclohexyl ring with an adamantly ring and piperidine with morpholine group (TAMORF) have lower toxicity. Both compounds possess low cytotoxicity and radioprotective activity, but TAMORF also shows cell growth inhibitory effects. To clarify differences in their biological efficiency observed in vitro and in vivo, additional analyses are necessary. Since TAMORF was found to significantly inhibit cell growth and proliferation in vitro, it is reasonably to consider it as a source molecule promising for further modifications and development of more potent substances with antitumor properties rather then radioprotector or antidote in organophosphorus poisoning. Topics: Adamantane; Cell Survival; Cholinesterase Inhibitors; Cholinesterase Reactivators; Chromosome Aberrations; Comet Assay; Erythrocytes; Gamma Rays; Humans; In Vitro Techniques; Lethal Dose 50; Leukocytes; Lymphocytes; Morpholines; Mutagens; Phencyclidine; Piperidines; Radiation-Protective Agents; Soman; Structure-Activity Relationship; Thiophenes; Trypan Blue | 2006 |
Characterization of the non-competitive antagonist binding site of the NMDA receptor in dark Agouti rats.
The ability of non-competitive NMDA antagonists and other selected compounds to inhibit [3H]MK-801 binding to the NMDA receptor in brain membranes was evaluated in female, dark Agouti rats. In homologous competition binding studies the average apparent affinity (KD) of [3H]MK-801 for its binding site was 5.5 nM and the binding site density (Bmax) was 1.83 pmol/mg protein. Inhibition of [3H]MK-801 binding by non-competitive NMDA antagonists was best described with a one-site competition model and the average Hill coefficients were -1. A series of eight non-competitive NMDA antagonists inhibited [3H]MK-801 binding with the following rank order of affinity (K(i), nM): MK-801 (5.5) > dexoxadrol (21.5) > or = TCP (24.2) > phencyclidine (100.8) > (+)-SKF 10,047 (357.7) > dextrorphan (405.2) > ketamine (922.2) > dextromethorphan (2913). These inhibition binding constants determined in dark Agouti rat brain membranes were significantly correlated (P = 0.0002; r2 = 0.95) with previously reported values determined in Sprague-Dawley rats [Wong et al., 1988, J. Neurochem. 50, 274-281]. Despite significant differences in metabolic capability between these strains, the central nervous system NMDA receptor ion channel shares similar characteristics. Topics: Animals; Binding, Competitive; Brain; Dextromethorphan; Dioxolanes; Dizocilpine Maleate; Dose-Response Relationship, Drug; Female; Ketamine; N-Methylaspartate; Phenazocine; Phencyclidine; Piperidines; Rats; Rats, Mutant Strains; Receptors, N-Methyl-D-Aspartate; Scintillation Counting; Tritium | 2004 |
Re-evaluation of phencyclidine low-affinity or "non-NMDA" binding sites.
TCP and its derivative gacyclidine (+/- GK11) are high-affinity non-competitive antagonists of N-methyl-D-aspartate (NMDA) receptors (NMDARs) and as such exhibit significant neuroprotective properties. These compounds also bind with a low affinity to binding sites whose pharmacological profiles are different from that of NMDARs. With the intention to develop new strategies of neuroprotection, we found it mandatory to investigate whether 1-[1-(2-thienyl)cyclohexyl]piperidine (TCP) and gacyclidine low-affinity sites are similar. The effects of several drugs selective for either NMDARs or the [(3)H]TCP low-affinity site (or PCP(3) site) on (+), (-)[(3)H]GK11 and [(3)H]TCP specific binding were investigated. Competition experiments on cerebellum homogenates revealed substantial differences between the pharmacological profiles of the PCP(3) site and that of gacyclidine's enantiomers low-affinity sites. Under experimental conditions preventing the interaction of the radioligands with NMDARs, the autoradiographic study showed, however, that the distributions of both [(3)H]TCP and (-)[(3)H]GK11 specific binding were similar. The specific labelling was low and uniform in telencephalic structures, whereas in the cerebellum it was higher in the molecular than in the granular layer. Finally, the analysis of competition experiments performed on tissues slices demonstrated that PCP(3) selective ligands were unable to prevent [(3)H]TCP or (-)[(3)H]GK11 binding to "non-NMDA" binding sites. As a whole, our data suggest that: (1) the different pharmacological profiles of [(3)H]TCP and [(3)H]gacyclidine enantiomers on low-affinity sites are due to their selectivity for specific NMDARs subpopulations; (2) the pharmacological isolation of TCP and gacyclidine "non-NMDA" binding sites is the most appropriate way to further study the low-affinity component of their specific binding. Obtaining reliable and specific pharmacological tools for those binding sites is of particular interest, since it is likely that they play a substantial role in the low neurotoxicity, and therefore tolerability, of gacyclidine, a new neuroprotective drug currently evaluated in clinical trials for the treatment of brain and spinal cord injuries. Topics: Animals; Binding Sites; Binding, Competitive; Brain; Brain Injuries; Cerebellum; Cyclohexanes; Cyclohexenes; Excitatory Amino Acid Antagonists; Glutamic Acid; Male; Neurons; Neuroprotective Agents; Phencyclidine; Piperidines; Radioligand Assay; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Stereoisomerism; Subcellular Fractions; Synapses; Synaptic Transmission; Tritium | 2002 |
Effect of PCP and sigma ligands on both noradrenaline- and electrically-induced contractions and on [3H]-noradrenaline uptake in rat vas deferens.
1. Electrically induced contractions of the epididymal portion of rat vas deferens were potentiated in concentration-dependent manner (0.1-30 microM) by different sigma and PCP receptor ligands (PCP, TCP, (+)-MK-801, dextromethorphan and (+)-3-PPP); dextrorphan did it in a minor extent. 2. Sigma and PCP receptor ligands also potentiated the effect of noradrenaline, inducing a reduction of the noradrenaline EC50 value in the rat vas deferens. The rank order of potencies was: PCP > TCP > (+)-3-PPP > (+)-MK-801 > dextrorphan > > > dextrometorphan. 3. In contrast, haloperidol (1 microM), a sigma receptor ligand, inhibited both the neurogenic and noradrenaline-induced responses in this tissue. 4. The effect of PCP and sigma receptor ligands on noradrenaline uptake was evaluated. All compounds tested, including haloperidol, inhibited the tritiated noradrenaline incorporation to the tissue. IC50 values were in the micromolar range, between 1.09 microM for dextrophan and 18 microM for dextrometorphan. 5. It is concluded that a direct interaction with the noradrenaline uptake system is involved in the potentiating effect of some sigma and PCP receptor ligands in the epididymal portion of rat vas deferens. Topics: Adrenergic alpha-Agonists; Animals; Dextromethorphan; Dizocilpine Maleate; Dopamine Agonists; Electric Stimulation; Excitatory Amino Acid Antagonists; Ligands; Male; Muscle Contraction; Neuroprotective Agents; Norepinephrine; Phencyclidine; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Phencyclidine; Receptors, sigma; Tritium; Vas Deferens | 1998 |
Characterization of haloperidol and trifluperidol as subtype-selective N-methyl-D-aspartate (NMDA) receptor antagonists using [3H]TCP and [3H]ifenprodil binding in rat brain membranes.
[3H]TCP and [3H]ifenprodil binding to N-methyl-D-aspartate (NMDA) receptors in rat forebrain membranes was used to compare the inhibition of haloperidol and trifluperidol with that of ifenprodil and eliprodil. In the [3H]TCP binding assay, inhibition curves of ifenprodil, eliprodil, haloperidol and trifluperidol revealed two affinity states in the presence of glutamate, glycine and spermidine. The potency of these agents to inhibit the high-affinity fraction of the binding agreed with the results of other studies investigating their potency to block glutamate-induced current at recombinant NR1a/NR2B NMDA receptors expressed in Xenopus oocytes. These agents also inhibited [3H]ifenprodil binding in a biphasic manner, whether in the absence or the presence of either the sigma site ligand GBR-12909 or spermidine. Spermidine reduced the fraction of high-affinity sites labeled with [3H]ifenprodil. The only alteration in the affinity was a decrease in the IC50 value of haloperidol to inhibit the high-affinity fraction of [3H]ifenprodil binding. GBR-12909 also reduced the fraction of [3H]ifenprodil sites inhibited by these compounds with high affinity, with no change in the affinity for either fraction. These data suggest that spermidine is neither a competitive antagonist at the fraction of the binding inhibited by these agents with high affinity, nor is this fraction of the binding to sigma sites. Haloperidol and trifluperidol represent a new class of agent that interacts at a site that is labeled by [3H]ifenprodil as well as [3H]TCP in rat brain membranes and that closely reflects ifenprodil's voltage-independent site on the recombinant NR1a/NR2B subtype of the NMDA receptor. Topics: Animals; Binding, Competitive; Brain; Cell Membrane; Female; Haloperidol; Illicit Drugs; Kinetics; Oocytes; Phencyclidine; Piperidines; Radioligand Assay; Rats; Receptors, N-Methyl-D-Aspartate; Recombinant Proteins; Trifluperidol; Xenopus | 1997 |
Morphological and morphometric analysis of serotonin-containing neurons in primary dissociated cultures of human rhombencephalon: a study of development.
Primary dissociated cultures of rhombencephalon were prepared from 5-9-week-old human fetuses. Half of some cultures were treated by two non-competitive N-methyl-D-aspartate antagonists, namely 1-(2-thienyl)cyclohexylpiperidine (TCP) and cis-Pip/Mel-[1-(2-thienyl)-2-methyl-cyclohexyl]piperidine (GK11) in negative enantiomeric form, which enhance the survival of human fetal central nervous system cells in culture. At different days in vitro, the treated and the control cultures were processed for immunocytochemical detection of serotonin-containing neurons which were studied by morphological and morphometric analysis. Statistical analysis showed that the surface of the stained neurons increased as a function of two parameters of time, the gestational age of the cells and the duration of the cultures. The complexity of the shape of the serotonin neurons characterized by the shape factor, the number of bifurcations and the morphological feature (bipolar or multipolar) was found to increase with the gestational age. It appears that the in vitro development of the embryonic cells which represents stages of maturation and differentiation can be specifically evaluated. Such an analysis of fetal central nervous system cells improves the knowledge of factors important in grafting experiments. We verified that the two drugs do not appreciably alter the in vitro development of the treated cells; thus they may be considered as promising drugs for human neuroprotection. Topics: Cell Differentiation; Cell Size; Cells, Cultured; Cyclohexanes; Cyclohexenes; Excitatory Amino Acid Antagonists; Fetus; Humans; Illicit Drugs; Neurons; Neuroprotective Agents; Phencyclidine; Piperidines; Receptors, N-Methyl-D-Aspartate; Rhombencephalon; Serotonin | 1997 |
Synthesis and evaluation of 1-(1-[5-(2'-[18F]fluoroethyl)-2-thienyl]-cyclohexyl)piperidine as a potential in vivo radioligand for the NMDA receptor-channel complex.
1-(1-[5-(2'-[18F]Fluoroethyl)-2-thienyl]cyclohexyl)piperidine (18FE-TCP) was prepared as a fluorine-substituted analogue of the potent NMDA receptor channel blocker, 1-[1-(2-thienyl)cyclohexyl]piperidine (TCP), by the mesylate displacement with [18F]fluoride ion with isolated radiochemical yields of 6-12%, and the synthesis time including a two step HPLC purification was 120 min. The regional distribution in rat brain after i.v. injection of 18FE-TCP was heterogeneous and similar to the known distribution of phencyclidine recognition sites, with hippocampus-cerebellum, striatum-cerebellum and cerebral cortex-cerebellum concentration ratios of 2.08, 1.7 and 1.54, respectively, 15 min post-injection. Furthermore, this localized regional cerebral distribution was blocked by co-injection with the unlabelled FE-TCP or pretreatment with cis-2-hydroxymethyl-r-1-(N-piperidyl)-1-(2-thienyl)cyclohexane, with the greatest reductions seen in the hippocampus followed by the striatum and cerebral cortex. However, relatively low receptor binding affinity and high non-specific binding due to its high lipophilicity suggest that 18FE-TCP may not be a suitable radioligand for in vivo PET investigations of the NMDA receptor-channel complex. Topics: Animals; Fluorine Radioisotopes; Male; Phencyclidine; Piperidines; Radioligand Assay; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Thiophenes; Tissue Distribution; Tomography, Emission-Computed | 1993 |
The antiparkinsonian agent budipine is an N-methyl-D-aspartate antagonist.
Budipine (1-t-butyl-4,4-diphenylpiperidine) is a novel antiparkinsonian agent. Its clinical efficacy has been proven in double-blind placebo-controlled trials. The mechanism of action of budipine, however, is unknown. Budipine selectively increased the threshold of N-methyl-D-aspartate (NMDA)-induced seizures in mice. Similar to known specific NMDA antagonist, budipine depressed polysynaptic spinal reflexes in mice, but had no consistent effect on spinal monosynaptic reflexes. In receptor binding experiments, budipine displaced thienylcyclohexylpiperidyl-3,4-[3H]-(n) ([3H]-TCP) from its binding site with an IC50 of 36 microM suggesting that budopine acts as a non-competitive NMDA antagonist with moderate receptor affinity. It is concluded that the newly discovered NMDA antagonistic action of budipine is at least partly responsible for its antiparkinsonian activity. Our findings are additional evidence for the hypothesis that NMDA antagonists may be useful in the treatment of Parkinson's disease (PD). Topics: Amino Acids; Anesthesia; Animals; Antiparkinson Agents; Binding, Competitive; Brain Chemistry; H-Reflex; In Vitro Techniques; Male; Mice; N-Methylaspartate; Phencyclidine; Piperidines; Rats; Receptors, N-Methyl-D-Aspartate; Reflex; Reflex, Monosynaptic; Seizures; Spinal Cord | 1993 |
Characterization of [3H]desmethylimipramine binding in bovine adrenal medulla: interactions with sigma- and (or) phencyclidine-receptor ligands.
High-affinity binding sites (apparent KD 2.87 nM) for [3H]desmethylimipramine ([3H]DMI), have been demonstrated and characterized in membrane preparations of bovine adrenal medulla. The binding of [3H]DMI improved upon pretreatment of the membrane with KCl and was saturable, sodium dependent, and potently inhibited by nisoxetine and imipramine. [3H]DMI binding was also inhibited by various phencyclidine (PCP)- and (or) sigma-receptor ligands, with the following order of potency: haloperidol > rimcazole > (-)-butaclamol > dextromethorphan > MK-801 > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP) > PCP > N-(2-thienyl)cyclohexyl-3,4-piperidine (TCP) > (+)-SKF-10047 > (-)-SKF-10047. The inhibition produced by sigma ligands was not attributed to stimulation of either sigma 1- or sigma 2-receptors, owing to inactivity of the selective sigma-receptor ligands (+)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG). The inhibition of [3H]DMI binding by sigma- and PCP-receptor ligands was not attributed to PCP1- or PCP2-receptor stimulation, owing to the decreased potency (100-fold) of these ligands in [3H]DMI assays compared with the affinity for brain PCP1 sites, and the ineffectiveness of the PCP2-ligand N-(1-(2-benzo(b)thiophenyl)cyclohexyl)piperidine (BTCP). Scatchard analysis of the inhibition by the sigma-ligands haloperidol and (+)-3-PPP, as well as the PCP1 receptor ligand MK-801, demonstrated noncompetitive interaction with the site bound by [3H]DMI. These studies indicate that bovine adrenomedullary membranes possess a specific receptor for the noradrenaline uptake inhibitor [3H]DMI, which is sensitive to allosteric modulation produced by PCP and sigma-ligands. Topics: Adrenal Medulla; Animals; Binding Sites; Cattle; Desipramine; Dextromethorphan; Dizocilpine Maleate; Phenazocine; Phencyclidine; Piperidines; Potassium Chloride; Receptors, Opioid, delta; Receptors, Phencyclidine; Tranquilizing Agents | 1992 |
Neomycin is an agonist at a polyamine site on the N-methyl-D-aspartate receptor.
Neomycin appears as a full agonist and spermidine as a partial agonist at the site where polyamines enhance 1-[1-(2-thienyl)cyclohexyl][3H]piperidine ([3H]TCP) binding on the N-methyl-D-aspartate (NMDA) receptor. Other aminoglycosides also enhance [3H]TCP binding with efficacies roughly proportional to the number of primary amine groups. The polyamine antagonists ifenprodil and arcaine inhibit enhancement of [3H]TCP binding by spermidine or neomycin. The inhibition of [3H]TCP binding by arcaine is apparently competitively reduced by neomycin and spermidine, supporting a common site. Diethylenetriamine (previously described as a polyamine antagonist) may be a partial agonist. Enhancement by neomycin or spermidine is not additive to that of Mg2+, consistent with competition of Mg2+ and spermidine or neomycin at the site where these compounds enhance [3H]TCP binding. Polyamines also enhance the binding of the competitive antagonist 2-(2-carboxypiperazin-4-yl)[3H]propyl-1-phosphonic acid ([3H]CPP). Neomycin, which does not enhance [3H]CPP binding, inhibits the enhancement by spermidine. That this site is distinct from the site where spermidine and neomycin increase [3H]TCP binding is supported by different pharmacology. Arcaine and diethylenetriamine do not inhibit spermidine enhancement of [3H]CPP binding. Mg2+ also does not compete with the spermidine enhancement of [3H]CPP binding. Ifenprodil inhibits the spermidine enhancement of [3H]CPP binding. The data suggest two or more polyamine sites, with arcaine selective for the site that enhances [3H]TCP binding. Neomycin is an agonist at one polyamine site and antagonist to the second. Topics: Adrenergic alpha-Antagonists; Animals; Biguanides; Magnesium; Male; Neomycin; Phencyclidine; Piperazines; Piperidines; Polyamines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Spermidine; Synaptic Membranes; Tritium | 1992 |
ES-242-2, -3, -4, -5, -6, -7, and -8, novel bioxanthracenes produced by Verticillium sp., which act on the N-methyl-D-aspartate receptor.
Verticillium sp. SPC-15898 was found to produce novel metabolites, designated ES-242-2-(-)8, which were structurally related to ES-242-1. These compounds were isolated from the culture broth and the physico-chemical and biochemical properties were examined. ES-242-2-(-)8 inhibited [3H]thienyl cyclohexypiperidine ([3H]TCP) binding to rat crude synaptic membranes (CSM) with IC50 values of 0.116, 2.9, ca. 2.9, 25.3, 1.0, 59, 24, and 13 microM, respectively. None of these compounds showed inhibitory effects against the binding of [3H]kainate to its receptor, which is another subtype of the excitatory amino acid receptor. Topics: Animals; Brain; In Vitro Techniques; Kainic Acid; Mitosporic Fungi; Phencyclidine; Piperidines; Pyrans; Rats; Receptors, N-Methyl-D-Aspartate; Structure-Activity Relationship; Tritium | 1992 |
Non-competitive antagonists of N-methyl-D-aspartate prevent spontaneous neuronal death in primary cultures of embryonic rat cortex.
Primary cultures of embryonic rat cerebral cortex were treated after 17 days in vitro for 10 min with a single dose of the non-competitive antagonists of N-methyl-D-aspartate (NMDA) receptor MK 801, TCP, and GK 11. They were then maintained in vitro for 31, 59, or 73 days, and then processed for the immunocytochemical detection of neuron-specific enolase (NSE). Immunoreactive cells were counted in treated and control cultures, and it was found that, except at 31 days, treated cultures contained far more NSE immunoreactive cells than controls. Moreover, this effect was dose-dependent, since with both TCP and GK 11 neuron survival was significantly higher with, respectively, 20 microM and 5 microM than with the lowest concentration of 2.5 microM. We tentatively conclude that spontaneous neuron death occurring in primary cultures in vitro is at least partly related to the NMDA-associated Ca++ channel, since the common property of the molecules we used is to block this channel. The relevance of this mechanism of cell death in vitro to neuronal death in vivo is discussed. Topics: Animals; Cell Survival; Cells, Cultured; Cerebral Cortex; Cyclohexanes; Cyclohexenes; Dizocilpine Maleate; Embryo, Mammalian; Female; N-Methylaspartate; Neurons; Phencyclidine; Piperidines; Pregnancy; Rats; Rats, Inbred Strains | 1991 |
Specificity of phencyclidine-like drugs and benzomorphan opiates for two high affinity phencyclidine binding sites in guinea pig brain.
Recently, the presence of two high affinity binding sites for phencyclidine were described in guinea pig brain, with one site coupled to the glutamate excitatory amino acid receptor, specifically activated by N-methyl-D-aspartate (NMDA) (site 1) and the other site associated with the dopamine (DA) reuptake carrier (site 2). Phencyclidine and its analogs, as well as the benzomorphan opiates, are known to interact with binding sites for phencyclidine. In this study, the equilibrium dissociation constants (Kd) of these compounds for the two binding sites for phencyclidine were determined. Phencyclidine and 1-[1-(2-thienyl)cyclohexyl]piperidine (TCP), an analog of PCP, were essentially non-selective between the two sites and also were the two drugs of the group observed to have the highest affinity for site 2. (+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,10-imine [(+)MK801] was the most selective agent for site 1, while none of the drugs tested showed selectivity for site 2. In humans, phencyclidine produces psychotomimetic effects, while (+)MK801 has been reported to produce minimal, if any, psychotomimetic effects, at doses sufficient to reduce seizures. These clinical observations, in conjunction with the present biochemical binding data, suggest that (+)MK801 may serve as a "marker" for site 1 and that the psychotomimetic effects of phencyclidine might be mediated by site 2. Topics: Analgesics; Animals; Benzomorphans; Brain; Dioxolanes; Dizocilpine Maleate; Guinea Pigs; In Vitro Techniques; Kinetics; Ligands; Narcotics; Phencyclidine; Piperidines; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Phencyclidine; Structure-Activity Relationship | 1990 |
N-methyl-D-aspartate recognition site ligands modulate activity at the coupled glycine recognition site.
In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site. Topics: Animals; Aspartic Acid; Binding Sites; Binding, Competitive; Glutamates; Glutamic Acid; Glycine; Ligands; N-Methylaspartate; Phencyclidine; Pipecolic Acids; Piperidines | 1990 |
Ifenprodil and SL 82.0715 as cerebral antiischemic agents. III. Evidence for antagonistic effects at the polyamine modulatory site within the N-methyl-D-aspartate receptor complex.
Ifenprodil and SL 82.0715 are noncompetitive N-methyl-D-aspartate (NMDA) antagonists whose inhibitory actions are not explained by antagonistic effects at any of the three commonly recognized sites within the NMDA receptor complex (recognition, channel and modulatory glycine sites). We presently show that ifenprodil and SL 82.0715 antagonize the effects of NMDA via a selective action at the recently described polyamine modulatory site. Spermine and spermidine (0.5-100 microM) increase the binding of [3H]1-[1-(2-thienyl)cyclohexyl] piperidine to washed rat forebrain membranes in the presence of glutamate (10 microM). This effect is antagonized by ifenprodil and SL 82.0715 (0.1-10 microM) at concentrations which do not displace [3H]1-(2-thienyl)cyclohexyl] piperidine in the absence of added polyamine. Spermine and spermidine (up to 100 microM) do not significantly alter the binding of [3H]glycine but increase the binding of the NMDA recognition site ligand [3H](+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid. Ifenprodil and SL 82.0715 (0.1-10 microM) antagonize this effect; ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-10-imine maleate) or 7-chlorokynurenate (100 microM) are ineffective. In immature rat cerebellar slices, spermine and spermidine (10-1000 microM) potentiate the maximal effects of NMDA (80-160 microM) on cyclic GMP production. Spermine (100-1000 microM) reverses the antagonistic effects of ifenprodil (0.15-50 microM) but not of ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-10-imine acid or kynurenate on the NMDA receptor-mediated increase in cyclic GMP levels. Ifenprodil (0.01-1 microM) potently but only partially antagonizes the depolarizing effects of NMDA (10 microM) on the immature rat spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Adrenergic alpha-Antagonists; Animals; Aspartic Acid; Binding Sites; Binding, Competitive; Brain; Cells, Cultured; Drug Interactions; Female; Glycine; Male; N-Methylaspartate; Phencyclidine; Piperidines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Spermidine; Spermine; Spinal Cord | 1990 |
Phencyclidine and related compounds evoked [3H]dopamine release from rat mesencephalic cell cultures by a mechanism independent of the phencyclidine receptor, sigma binding site, or dopamine uptake site.
At concentrations greater than or equal to 100 microM, phencyclidine (PCP), N-(1-(2-thienyl)-cyclohexyl)piperidine (TCP), and MK-801 induced [3H]dopamine release from dissociated cell cultures of rat mesencephalon. This release was Ca2+ independent and tetrodotoxin insensitive. Tetrodotoxin (2 microM) itself had no effect on spontaneous release of [3H]dopamine. [3H]Dopamine release was induced by 1,3-di(2-tolyl)guanidine, a sigma ligand, and by 4-aminopyridine (1-3 mM), a K+ channel blocker. No stereoselectivity was observed for [3H]dopamine release evoked by the dioxadrol enantiomers, dexoxadrol, and levoxadrol, or by enantiomers of N-allylnormetazocine (SKF 10,047). The selective dopamine uptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909) did not affect spontaneous or TCP-evoked [3H]dopamine release. Together, these data suggest that the dopamine-releasing effects of PCP-like compounds on the mesencephalic cells were not mediated by actions at the PCP receptor or sigma binding site, Ca2+, or Na+ channels, or at the high affinity dopamine uptake site. It remains conceivable that blocking actions of PCP-like compounds at voltage-regulated K+ channels may at least partly explain the response. These results are discussed in comparison with findings in intact brain. Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Binding Sites; Cells, Cultured; Dioxolanes; Dizocilpine Maleate; Dopamine; Dose-Response Relationship, Drug; Guanidines; Mesencephalon; N-Methylaspartate; Neurotransmitter Uptake Inhibitors; Phencyclidine; Piperazines; Piperidines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Phencyclidine; Sigma Factor; Tritium | 1990 |
Characterization of (+)-[3H]3-PPP and [3H]TCP binding sites in membrane preparations of bovine adrenal medulla.
Topics: Adrenal Medulla; Animals; Binding Sites; Binding, Competitive; Cattle; In Vitro Techniques; Membranes; Phencyclidine; Piperidines; Receptors, Opioid; Receptors, sigma | 1990 |
Ontogeny of PCP and sigma receptors in rat brain.
Phencyclidine (PCP) binds with high affinity to two receptors in rat brain--the PCP receptor and the Sigma receptor. Although both receptors are present prenatally, and their number increases postnatally, their rate of increase, compared to the increase in brain protein, is quite different, yielding distinct ontogenic profiles. Thus, PCP receptors are present on prenatal day 2 and show a further 15-fold increase by postnatal day 28. In contrast, Sigma receptors are present at their highest density during the perinatal period, and decline thereafter. The Kd of the PCP receptor for TCP remains constant throughout development, whereas the Kd of the Sigma receptor for (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine decreases 40% postnatally. On postnatal day 6, both PCP and Sigma receptors display a pharmacological profile similar to that observed in adult animals. Topics: Aging; Animals; Brain; Phencyclidine; Piperidines; Rats; Rats, Inbred Strains; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma | 1990 |
Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary.
We have used a variety of selective radioligands to identify and localize sigma- and phencyclidine (PCP)-binding sites in rat endocrine organs. [3H]Haloperidol-labeled sigma-receptors were identified in membrane homogenates of rat pituitary, adrenal, testis, and ovary which had kinetic and pharmacological characteristics similar to those of the well characterized sigma-receptors in rat cerebellum. The highest density of sigma-receptors was present in the ovary, with progressively lower densities present in the testis, pituitary, adrenal, and cerebellum, respectively. In autoradiographic studies, sigma-receptors [labeled with d-3-(3-hydroxyphenyl)N-(1-propyl-2,3-[3H]piperidine or [3H]1,3-di-(2-tolyl)guanidine] were discretely localized within the endocrine tissues. In the pituitary, the highest density of sigma-receptors was found in the anterior lobe. In the adrenal, sigma-receptors were localized primarily in the cortex. In the testis, sigma-receptors were present in highest concentrations in the ductuli efferentes and ductus epididymis; lower densities of binding sites were present in the seminiferous tubules, and no binding was seen in the interstitial tissue. In the ovary, sigma-receptors were localized in high density in the maturing follicles, and lower densities were present in resting follicles. After hypophysectomy, there were relative increases in the densities of sigma receptors in the remaining tissue in the adrenal gland and testis. In contrast, hypophysectomy resulted in a marked depletion of sigma-binding sites in the ovary. The data from hypophysectomized rats indicate that the highest densities of sigma-receptors in the ovary are localized to (LH-dependent) maturing follicles, while sigma-binding sites in adrenal and testis are localized to cells that are not dependent on trophic maintenance by the pituitary. In contrast, high affinity PCP receptors were not detected in pituitary, adrenal, testis, or ovary either by homogenate binding studies with 3,4-[3H]N-[1-(2-thienyl)cyclohexyl]piperidine or in vitro autoradiography using 3,4-[3H]N-[1-(2-thienyl)cyclohexyl]piperidine and d-[3H]5-methyl-10,11-dihydro-5H-dibenzo-[a,d] + cyclohepten-5,10-imine. In summary, the data suggest that the reported endocrine effects of PCP and the prototypic sigma-receptor agonist N-allylnormetazocine are probably mediated either through direct action on sigma-receptors in the pituitary and/or target endocrine organs or by actions on sigma- and/or PCP receptors Topics: Adrenal Glands; Animals; Autoradiography; Brain Chemistry; Cell Membrane; Dibenzocycloheptenes; Dizocilpine Maleate; Female; Haloperidol; Hypophysectomy; Male; Ovary; Phencyclidine; Piperidines; Pituitary Gland; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma; Testis; Tissue Distribution | 1989 |
Phencyclidine and sigma receptors in rat spinal cord: binding characterization and quantitative autoradiography.
These experiments were designed to compare phencyclidine (PCP) and sigma (sigma) receptor binding sites in the rat spinal cord by using receptor binding and autoradiographic techniques. Binding sites for 3H-TCP (3H-1-[1-(2-thienyl)cyclohexy]piperidine), a PCP receptor agonist, and (+)3H-3-PPP (3H-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine), a sigma receptor agonist, in the rat spinal cord were shown to represent two populations of recognition sites. Inhibition studies revealed that ligands with high affinity for the PCP receptor (MK-801 and PCP) were potent competitors at 3H-TCP binding sites whereas the putative sigma receptor ligands (+/-)pentazocine and haloperidol were potent competitors at (+)3H-3-PPP binding sites. The autoradiographic distribution of 3H-TCP and (+)3H-3-PPP binding sites in adjacent sections of rat spinal cord demonstrated the occurrence of two distinct populations of binding sites. 3H-TCP binding sites were localized primarily in laminae I and II in cervical and thoracic spinal segments. Binding sites in lamina I decreased in density along a rostral to caudal gradient in the spinal cord. The highest density of (+)3H-3-PPP binding sites was found in the ventral horn (lamina VIII and IX) and over perikarya in dorsal root ganglia. Significantly elevated densities of (+)3H-3-PPP binding sites were also found in lamina X within thoracic and lumbar segments and in the intermediolateral cell column. The results of the present study show that PCP and sigma receptor binding sites are differentially localized in the rat spinal cord and suggest that separate binding sites exist for PCP and sigma agonists. Topics: Animals; Autoradiography; Binding, Competitive; Ganglia, Spinal; Male; Narcotic Antagonists; Phencyclidine; Piperidines; Rats; Rats, Inbred Strains; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma; Spinal Cord | 1989 |
Differentiation of phencyclidine and sigma receptor types affecting the central inspiratory termination mechanism in cat.
The effects of 1) the phencyclidine receptor ligand TCP, 2) sigma receptor ligands (+)3-PPP and DTG, and 3) N-methyl-D-aspartate receptor blockers MK-801 and dextrorphan were determined on a brainstem mechanism which controls the termination of the inspiratory phase of the breathing cycle. Inspiratory bursts were recorded from the phrenic nerve in decerebrate paralyzed cats ventilated by means of a phrenic driven servoventilator. The central mechanism which terminates inspiration was tested by withholding lung inflation, thus suppressing the contribution of the vagal feedback from the lungs to inspiratory termination. TCP increased the duration of test inspiration (tTi) by 17% at 0.03 mg/kg and by 14-fold (from 1.6 to 23 s) at 1 mg/kg. With dextrorphan, tTi was significantly increased at 3 mg/kg. In contrast, (+)3-PPP and DTG did not increase tTi at doses up to 10 mg/kg, although MK-801 (0.03 mg/kg), given after the sigma ligands, increased tTi by 59-90%. It is concluded that phencyclidine but not sigma receptor ligands block the central mechanism which terminates inspiration and that the likely site of action is the NMDA receptor complex. Topics: Animals; Brain Stem; Cats; Decerebrate State; Dextrorphan; Dibenzocycloheptenes; Dizocilpine Maleate; Guanidines; Phencyclidine; Phrenic Nerve; Piperidines; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma; Respiration | 1989 |
Phencyclidine selectively blocks the sustained voltage-dependent potassium conductance in PC12 cells.
We investigated the effects of phencyclidine (PCP), a psychotomimetic dissociative anesthetic, and several related drugs on voltage-dependent K+ currents in PC12 cells, a neuron-like clonal cell line derived from a rat pheochromocytoma. Whole-cell voltage clamp recordings demonstrated two kinetically distinct voltage-dependent outward (K+) current components in these cells: a rapidly activating and inactivating component, IA, that was selectively eliminated by 4-aminopyridine (2 mM) and a slowly activating, minimally inactivating (sustained) component, IK, that was specifically blocked by tetraethylammonium (20 mM). PCP (1-100 microM) produced a dose-dependent blockade of both IK and IA, however, at low doses the drug selectively reduced IK with little effect on IA; the IC50s for blockade of IK and IA were 4 and 25 microM, respectively. The blockade of IK was voltage-dependent so that the degree of block decreased with increasing depolarization, indicating that the blocking mechanism is likely one in which the positively charged PCP molecule is drawn into the channel pore. Several PCP related drugs also suppressed IK. Thienyl-PCP (TCP), a drug that is behaviorally more potent than PCP, partially blocked IK at low doses (31% at 1 microM), but even at high doses (25 microM) the degree of block was never as great as that produced by PCP. The optically active PCP congeners (+)-PCMP (1-(1-phenylcyclohexyl)-3-methyl-piperidine) and dexoxadrol were also potent blockers of IK. However, in contrast to the stereospecificity these compounds demonstrate in binding to high-affinity PCP receptors and in eliciting PCP-like behavioral responses, their enantiomers (-)-PCMP and levoxadrol showed similar potencies as the parent compounds in blocking IK. These results demonstrate that PCP and related drugs are powerful, selective blockers of IK in PC12 cells. The structure-activity studies indicate that this effect occurs at a site that is pharmacologically distinct from the behaviorally relevant PCP receptor. Blockade of K+ channels is unlikely to be responsible for the psychotomimetic or anti-convulsant properties of PCP, but could account for the convulsant potential of the drug. Topics: Anesthetics; Animals; Dioxolanes; Electric Stimulation; Ion Channels; Membrane Potentials; Phencyclidine; Pheochromocytoma; Piperidines; Potassium; Rats; Tumor Cells, Cultured | 1988 |
Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. II. Evidence for N-methyl-D-aspartate receptor antagonist properties.
The effects of the anti-ischemic agents ifenprodil and its derivative SL 82.0715 ((+/-)-alpha-(4-chlorophenyl)-4-[(4-fluorophenyl) methyl]-1-piperidineethanol] have been analyzed in a number of models indicative of N-methyl-D-aspartate (NMDA) antagonistic potential in vitro and in vivo. Ifenprodil and SL 82.0715 potently and noncompetitively antagonize the stimulatory effects of NMDA on cyclic GMP production in immature rat cerebellar slices (IC50 values, 0.4 and 10 microM, respectively), as well as the NMDA-evoked [3H]acetylcholine release in adult rat striatal slices (IC50 values, 1.6 and 6.6 microM, respectively). Ifenprodil is 10 times more potent than (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) but less active than the reference noncompetitive NMDA channel blockers [MK 801, ((+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine ], phencyclidine and 1-[1-(2-thienyl)cyclohexyl]piperidine (TCP)] in these models. Ifenprodil and SL 82.0715 partially displace (maximal displacement 40-50% at 10 microM) the NMDA receptor ligand [3H]CPP from its binding site to rat brain membranes (IC50 values, 0.1 and 0.3 microM, respectively) in a noncompetitive manner; in the micromolar range the two agents also partially displace the NMDA channel ligand [3H]TCP from its binding site to rat brain membranes, and noncompetitively antagonize the L-glutamate-induced increase in [3H]TCP binding. Ifenprodil (0.01-1 microM) partially antagonizes the depolarizing effects of NMDA on the immature rat hemisected spinal cord in vitro. In mouse cultured spinal cord neurons, ifenprodil dose-dependently antagonizes the depolarizing effects of micropressure applied NMDA. Inhibition of the effects of NMDA in this model by ifenprodil and SL 82.0715 is noncompetitive. In vivo and after systemic i.p. administration, ifenprodil and SL 82.0715 antagonize the stimulatory effects of intrastriatally dialyzed NMDA on striatal dopamine release in rats (ID50 values, 0.9 and 0.3 mg/kg, respectively), and block the harmaline-evoked increase in cerebellar cyclic GMP production in mice (ID50 values, 3 and 4 mg/kg, respectively). These results indicate that ifenprodil is a noncompetitive NMDA antagonist which has a mechanism of action distinct from either the reference competitive NMDA receptor antagonists (CPP and 2-amino-5-phosphonovalerate) or the noncompetitive NMDA channel blockers (phencyclidine, TCP and MK 801). The potent NMDA antagonistic effects of the ifenprodil c Topics: Animals; Aspartic Acid; Brain Ischemia; Cells, Cultured; Cerebellum; Corpus Striatum; Cyclic GMP; Dopamine; Harmaline; In Vitro Techniques; Mice; N-Methylaspartate; Phencyclidine; Piperazines; Piperidines; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Spinal Cord | 1988 |
Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia.
Recent studies have strongly implicated the excitatory neurotransmitter glutamate in the cascade of pathological mechanisms that cause neuronal loss after certain types of brain ischemia. The neurotoxic effects of glutamate are mediated, at least in global ischemia, via NMDA receptors. In the present study we have examined the effects of compounds that possess NMDA receptor antagonist properties (ifenprodil, SL 82.0715 [(+/-)-alpha-(4-chlorophenyl)-4-[(4-fluorophenyl)methyl]- 1-piperidineethanol] and 1-[1-(2-thienyl)cyclohexyl]piperidine) on the histological consequences of focal, as opposed to global, cerebral ischemia in both the rat and the cat. Ifenprodil (0.3-3 mg/kg i.v.) administered as a perfusion over 3 hr after occlusion of the feline middle cerebral artery reduced the volume of infarcted tissue (measured 4 days after occlusion) in a dose-related manner. At the highest dose a 42% reduction of infarcted volume was noted, essentially in cortical tissue. In an identical protocol, a derivative of ifenprodil, SL 82.0715, reduced the volume of infarction in a manner comparable to that described for ifenprodil. As SL 82.0715 possesses better p.o. bioavailability, this compound was also evaluated in the rat, again after middle cerebral artery occlusion. First administered 30 min after the induction of ischemia, SL 82.0715 (1 and 10 mg/kg p.o.) reduced infarction volume by 34 and 48%, respectively. The quantitative histology was performed 2 days after middle cerebral artery occlusion. The noncompetitive receptor antagonist, 1-[1-(2-thienyl)cyclohexyl]piperidine, administered (1 mg/kg i.p.) before the induction of focal ischemia, similarly and significantly decreased the final volume of infarction. As both ifenprodil and SL 82.0715 are noncompetitive antagonists of the NMDA receptor, two conclusions may be drawn from the present investigation. First, NMDA antagonism by ifenprodil and its derivative is an effective approach for tissue sparing in animal models of stroke and brain infarction. Second, these pharmacological observations provide evidence for the involvement of excitatory amino-acid induced-neurotoxicity in the evolution and consequences of focal cerebral ischemia. Topics: Animals; Aspartic Acid; Brain Ischemia; Cats; Female; Male; Models, Cardiovascular; N-Methylaspartate; Phencyclidine; Piperidines; Rats; Rats, Inbred F344; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Vasoconstriction | 1988 |
Both the sigma receptor-specific ligand (+)3-PPP and the PCP receptor-specific ligand TCP act in the mouse vas deferens via augmentation of electrically evoked norepinephrine release.
Topics: Animals; Electric Stimulation; In Vitro Techniques; Male; Mice; Muscle Contraction; Norepinephrine; Phencyclidine; Piperidines; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma; Vas Deferens | 1987 |
Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine.
The benzomorphan opioid, SKF 10,047, is the prototypical agonist for the sigma receptor. In this study, pharmacological and autoradiographic analyses reveal that (+)-[3H]SKF 10,047 labels two sites in brain: a high affinity site resembling the sigma receptor and a second site, labeled with lower affinity by (+)-[3H] SKF 10,047, similar to the phencyclidine (PCP) receptor. The drug specificity of the high affinity site for (+)-[3H]SKF 10,047 resembles that of the putative sigma receptor labeled with (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine [(+)-[3H]-3-PPP], being potently inhibited by (+)-3-PPP, haloperidol and (+/-)-pentazocine, and demonstrating stereoselectivity for the (+)-isomer of SKF 10,047. In contrast, these drugs are weak in inhibiting binding of (+)-[3H]SKF 10,047 to the low affinity site, whereas PCP analogs, such as 1-[1-(2-thienyl)cyclohexyl]piperidine (TCP) and 1-[1-(m-aminophenyl)cyclohexyl]piperidine (m-NH2-PCP), are potent inhibitors. No stereoselectivity for the isomers of SKF 10,047 is noted at the low affinity binding site. Autoradiographic localizations of high affinity (+)-[3H]SKF 10,047 binding sites closely resemble those of (+)-[3H]-3-PPP labeled sites with high levels of binding in the hippocampal pyramidal cell layer, hypothalamus, pontine and cranial nerve nuclei and cerebellum. By contrast, low affinity (+)-[3H]SKF 10,047 sites are most abundant in nonpyramidal layers of the hippocampus, the cerebral cortex and thalamic nuclei, similar to the distribution of [3H]TCP labeled PCP receptors. Topics: Animals; Autoradiography; Binding, Competitive; Brain Chemistry; In Vitro Techniques; Kinetics; Male; Phenazocine; Phencyclidine; Piperidines; Radioligand Assay; Rats; Rats, Inbred Strains; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma; Stereoisomerism | 1986 |
Phencyclidine and sigma opiate receptors in brain: biochemical and autoradiographical differentiation.
Topics: Autoradiography; Brain; Humans; In Vitro Techniques; Membranes; Phenazocine; Phencyclidine; Piperidines; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Phencyclidine | 1985 |