piperidines has been researched along with satavaptan* in 4 studies
1 review(s) available for piperidines and satavaptan
Article | Year |
---|---|
Therapeutic role of vasopressin receptor antagonism in patients with liver cirrhosis.
Vasopressin, or antidiuretic hormone, is a peptide hormone that is released from the posterior pituitary gland in response to changes in blood pressure and plasma osmolality. The main pathophysiological states associated with high plasma vasopressin concentrations are cirrhosis, cardiac failure and syndrome of inappropriate antidiuretic hormone (SIADH) secretion. Pharmacological treatments for disorders of excess vasopressin secretion have been limited. However, oral bio-available selective and non-selective V(1) and V(2) receptor antagonists have recently become available for clinical use. Water retention in cirrhosis is a common problem, leading to ascites, peripheral oedema and hyponatraemia. Raised plasma vasopressin concentrations and decreased delivery of glomerular filtrate are believed to be the most important factors in the development of water retention. V(2) receptor antagonists are aquaretic agents that promote water excretion and improve hyponatraemia. Their potential role in cirrhosis has been examined in a number of recent studies that have shown increased free water clearance and serum sodium concentrations with few adverse effects. V(2) receptor antagonists represent a novel and promising new class of agent that may have major clinical utility in the treatment of patients with liver cirrhosis. Topics: Animals; Antidiuretic Hormone Receptor Antagonists; Azepines; Benzamides; Benzazepines; Controlled Clinical Trials as Topic; Diuretics; Heart Failure; Homeostasis; Humans; Inappropriate ADH Syndrome; Liver Cirrhosis; Models, Animal; Morpholines; Piperidines; Pyrroles; Quinolones; Rats; Spiro Compounds; Vasopressins | 2003 |
3 other study(ies) available for piperidines and satavaptan
Article | Year |
---|---|
Vasopressin increases type IV collagen production through the induction of transforming growth factor-beta secretion in rat mesangial cells.
Production of extracellular matrix proteins, such as type IV collagen, by mesangial cells contributes to progressive glomerulosclerosis. Transforming growth factor-beta (TGF-beta) modulates mesangial cell growth and stimulates extracellular matrix synthesis by mesangial cells. In this study, the ability of vasopressin (AVP), which causes mesangial cell proliferation and hypertrophy, to stimulate type IV collagen production and correlation with TGF-beta secretion by cultured rat mesangial cells was examined. AVP induced a time- and concentration-dependent increase in TGF-beta secretion and mitogenic effect in rat mesangial cells. This AVP-induced increase in TGF-beta secretion was potently inhibited by AVP V(1A) receptor-selective antagonist. AVP also induced a concentration-dependent increase in the production of type IV collagen and this effect was inhibited by V(1A) receptor-selective antagonist. Furthermore, TGF-beta also induced an increase in the production of type IV collagen; the AVP-enhanced production of type IV collagen was inhibited by an anti-TGF-beta antibody. These results demonstrate that AVP stimulates synthesis of type IV collagen by cultured rat mesangial cells through the induction of TGF-beta synthesis mediated by V(1A) receptors. Therefore, AVP-induced TGF-beta secretion by proliferating mesangial cells might act as an autocrine factor to regulate synthesis of extracellular matrix; this mechanism may contribute to glomerulosclerosis in renal diseases including diabetic nephropathy. Topics: Animals; Antidiuretic Hormone Receptor Antagonists; Arginine Vasopressin; Benzazepines; Cells, Cultured; Collagen Type IV; Dose-Response Relationship, Drug; Male; Mesangial Cells; Morpholines; Piperidines; Rats; Rats, Wistar; Spiro Compounds; Transforming Growth Factor beta | 2008 |
Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.
YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. Topics: Animals; Antidiuretic Hormone Receptor Antagonists; Arginine Vasopressin; Azepines; Binding, Competitive; Calcium; Cell Membrane; CHO Cells; Cricetinae; Cyclic AMP; Dose-Response Relationship, Drug; Female; Humans; Indoles; Morpholines; Muscle, Smooth; Oxytocin; Piperidines; Pyrrolidines; Radioligand Assay; Receptors, Oxytocin; Receptors, Vasopressin; Spiro Compounds; Tritium; Uterus | 2001 |
Pharmacological characterization of the human vasopressin receptor subtypes stably expressed in Chinese hamster ovary cells.
Three subtypes of human (h) arginine vasopressin (AVP) receptors, hV1A, hV1B and hV2, were stably expressed in Chinese hamster ovary (CHO) cells and characterized by [3H]-AVP binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. Scatchard analysis of saturation isotherms for the specific binding of [3H]-AVP to membranes, prepared from CHO cells transfected with hV1A, hV1B and hV2 receptors, yielded an apparent equilibrium dissociation constant (Kd) of 0.39, 0.25 and 1.21 nM and a maximum receptor density (Bmax) of 1580 fmol mg(-1) protein, 5230 fmol mg(-1) protein and 7020 fmol mg(-1) protein, respectively. Hill coefficients did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Pharmacological characterization of the transfected human AVP receptors was undertaken by measuring the relative ability of nonpeptide AVP receptor antagonists, YM087, OPC-21268, OPC-31260, SR 49059 and SR 121463A, to inhibit binding of [3H]-AVP. At hV1A receptors, the relative order of potency was SR49059>YM087>OPC-31260>SR 121463A> >OPC-21268 and at hV2 receptors, YM087=SR 121463A>OPC-31260>SR 49059> >OPC-21268. In contrast, the relative order of potency, at hV1B receptors, was SR 49059> >SR 121463A=YM087=OPC-31260=OPC-21268. In CHO cells expressing either hV1A or hV1B receptors, AVP caused a concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) with an EC50 value of 1.13 nM and 0.90 nM, respectively. In contrast, stimulation of CHO cells expressing hV2 receptors resulted in an accumulation of cyclic AMP with an EC50 value of 2.22 nM. The potency order of antagonists in inhibiting AVP-induced [Ca2+]i or cyclic AMP response was similar to that observed in radioligand binding assays. In conclusion, we have characterized the pharmacology of human cloned V1A, V1B and V2 receptors and used these to determine the affinity, selectivity and potency of nonpeptide AVP receptor antagonists. Thus they may prove to be a valuable tool in further examination of the physiological and pathophysiological roles of AVP. Topics: Animals; Benzazepines; Binding, Competitive; Calcium; CHO Cells; Cricetinae; Cyclic AMP; Humans; Indoles; Morpholines; Piperidines; Pyrrolidines; Quinolones; Receptors, Vasopressin; Spiro Compounds; Transfection; Tritium | 1998 |