piperidines and quinone-methide

piperidines has been researched along with quinone-methide* in 3 studies

Other Studies

3 other study(ies) available for piperidines and quinone-methide

ArticleYear
Therapeutic Vesicular Nanoreactors with Tumor-Specific Activation and Self-Destruction for Synergistic Tumor Ablation.
    Angewandte Chemie (International ed. in English), 2017, 11-06, Volume: 56, Issue:45

    Polymeric nanoreactors (NRs) have distinct advantages to improve chemical reaction efficiency, but the in vivo applications are limited by lack of tissue-specificity. Herein, novel glucose oxidase (GOD)-loaded therapeutic vesicular NRs (theraNR) are constructed based on a diblock copolymer containing poly(ethylene glycol) (PEG) and copolymerized phenylboronic ester or piperidine-functionalized methacrylate (P(PBEM-co-PEM)). Upon systemic injection, theraNR are inactive in normal tissues. At a tumor site, theraNR are specifically activated by the tumor acidity via improved permeability of the membranes. Hydrogen peroxide (H

    Topics: Antineoplastic Agents; Antioxidants; Boronic Acids; Cell Death; Cell Membrane Permeability; Drug Carriers; Esters; Glucose Oxidase; Glutathione; Humans; Hydrogen Peroxide; Hydrogen-Ion Concentration; Indolequinones; Methacrylates; Microscopy, Electron, Transmission; Nanostructures; Neoplasms; Piperidines; Polyethylene Glycols; Proof of Concept Study

2017
Uterine peroxidase-catalyzed formation of diquinone methides from the selective estrogen receptor modulators raloxifene and desmethylated arzoxifene.
    Chemical research in toxicology, 2007, Volume: 20, Issue:11

    Long-term usage of the selective estrogen receptor modulator (SERM) tamoxifen has been associated with an increased risk of endometrial cancer. One potential mechanism of tamoxifen-induced carcinogenesis involves metabolism to reactive intermediates, such as an o-quinone, quinone methide, and carbocations. We have previously shown that the benzothiophene SERMs, raloxifene and desmethylated arzoxifene (DMA), can also be bioactivated to electrophilic quinoids by rat/human liver microsomes and rat hepatocytes [(2006) Chem. Res. Toxicol. 19, 1125-1137]. Because the uterus is a major target tissue of estrogens and antiestrogens, it was of interest to determine if quinoids could be formed from SERMs in uterine tissue potentially producing cytotoxic effects. Incubations with rat uterine microsomes showed that both raloxifene and DMA could be oxidized to electrophilic diquinone methides that were trapped as the corresponding GSH conjugates. A new raloxifene GSH-dependent conjugate was identified as raloxifene Cys-Gly that was formed from the hydrolysis of 7-glutathinyl raloxifene by gamma-glutamyl transpeptidase. Interestingly, the metabolism of raloxifene and DMA in rat uterine microsomes was not NADPH-dependent and could be inhibited by cyanide and NADPH or enhanced by H2O2. In addition, coincubations with the peroxidase substrates guaiacol or o-phenlyenediamine inhibited diquinone methide GSH conjugate formation from both SERMs. Incubations of raloxifene and DMA with horseradish peroxidase (HRP) were studied as models of the interaction between benzothiophene SERMs and peroxidase. The results showed that HRP could directly oxidize raloxifene and DMA to the corresponding dimers via the formation of phenoxyl radicals in the absence of exogenous hydrogen peroxide. In addition, GSH appears to be involved in multiple peroxidase-catalyzed oxidative metabolic pathways of benzothiophene SERMs. Finally, COATag (covert oxidatively activated tag) methodology, which involves the utilization of biotin-conjugated raloxifene and DMA, was used to identify target proteins by affinity chromatography. Incubations of raloxifene and DMA COATags with rat uterine microsomes showed several modified proteins by Western blot analysis. The protein modification could be enhanced by the addition of H2O2 and decreased by the addition of NADPH, suggesting that unlike liver metabolism the formation of quinoids in the uterus could be mediated by uterine peroxidases.

    Topics: Alkylation; Animals; Catalysis; Female; Glutathione; Horseradish Peroxidase; Indolequinones; Microsomes; Piperidines; Quinones; Raloxifene Hydrochloride; Rats; Selective Estrogen Receptor Modulators; Thiophenes; Uterus

2007
Bioactivation of the selective estrogen receptor modulator acolbifene to quinone methides.
    Chemical research in toxicology, 2005, Volume: 18, Issue:2

    Although approved for the treatment of hormone-dependent breast cancer as well as for the prevention of breast cancer in high-risk women, the selective estrogen receptor modulator (SERM) tamoxifen has been associated with an increased risk of endometrial cancer in women. With an understanding of the potential carcinogenic mechanisms of these compounds, SERMs could in principle be designed or selected for use that avoids these problems. Acolbifene (EM-652) is a fourth-generation SERM and the active form of the ester prodrug EM-800. As a pure antagonist of breast tumor development and growth, acolbifene does not stimulate endometrial tissue. However, acolbifene was found in this investigation to form two kinds of quinone methides, either through chemical or through enzymatic oxidation. One was a classical acolbifene quinone methide, which was formed by oxidation at the C-17 methyl group, and the other was a diquinone methide involving the oxidation of two phenol groups. The half-life of the classical quinone methide was determined to be 32 +/- 0.4 s at physiological pH and temperature. The quinone methides reacted with glutathione (GSH) to form five mono-GSH conjugates and five di-GSH conjugates. The majority of GSH conjugates resulted from reaction of the classical acolbifene quinone methide with GSH. Incubations of acolbifene with GSH and either tyrosinase or human and rat liver microsomes also produced acolbifene quinone methide-GSH conjugates. In addition to reaction with GSH, the classical acolbifene quinone methide was also shown to react with deoxynucleosides. One of the major deoxynucleoside adducts was identified as the deoxyadenosine adduct resulting from reaction of the classical acolbifene quinone methide with the exocyclic amino group of adenine. Acolbifene could also induce DNA damage in the S30 breast cancer cell line. These data imply that the classical electrophilic acolbifene quinone methide might contribute to the potential toxicity of acolbifene.

    Topics: Animals; Biotransformation; Breast Neoplasms; Cell Line, Tumor; DNA Damage; Female; Glutathione; Humans; Indolequinones; Kinetics; Microsomes, Liver; Molecular Structure; Oligodeoxyribonucleotides; Oxidation-Reduction; Piperidines; Rats; Selective Estrogen Receptor Modulators

2005