piperidines has been researched along with phenyl-biguanide* in 6 studies
6 other study(ies) available for piperidines and phenyl-biguanide
Article | Year |
---|---|
Study of 5HT3 and HT4 receptor expression in HT29 cell line and human colon adenocarcinoma tissues.
Serotonin (5HT) has been shown to be a mitogenic factor in several carcinomas. Its mitogenic effect is elicited through a wide range of 5HT receptor subtypes. In this study, the effects of 5HT, 5HT3 (1-phenylbiguanide hydrochloride) and 5HT4 (cisapride) agonists in promoting the growth of the HT29 cell line and the growth-inhibition effect of the 5HT3 receptor antagonist (Y-25130 hydrochloride) and 5HT4 receptor antagonist (RS 23597-190) were investigated. The expressions of 5HT3 and 5HT4 receptors in human colon cancer tissues and the HT29 cell line were studied.. The growth-promoting and growth-inhibition effects of 5-HT, 5HT3 and 5HT4 agonists and antagonists on the HT29 cell line were studied using MTT assay. Receptor expression has been demonstrated by western blotting.. The results showed that 5HT, 5HT3, and 5HT4 agonists caused significant proliferation of HT29 cells. 5HT3 and 5HT4 receptor antagonists had an inhibitory effect on the growth of these cells. Western blot analysis gave bands from colon tissue extracts and the HT29 cell line.. The results indicate which 5HT3 and 5HT4 receptors are significantly expressed in both colon cancer tissue and the HT29 cell line. Expression for the 5HT3 receptor is more potent. Furthermore, 5HT plays a mitogenic role in colon cancer cells and antagonists of 5HT3, and 5HT4 receptors can inhibit cancer cell growth. Topics: Adenocarcinoma; Aminobenzoates; Biguanides; Blotting, Western; Bridged Bicyclo Compounds, Heterocyclic; Cell Proliferation; Cisapride; Colonic Neoplasms; HT29 Cells; Humans; Oxazines; para-Aminobenzoates; Piperidines; Receptors, Serotonin, 5-HT3; Receptors, Serotonin, 5-HT4; Serotonin 5-HT3 Receptor Agonists; Serotonin 5-HT3 Receptor Antagonists; Serotonin 5-HT4 Receptor Agonists; Serotonin 5-HT4 Receptor Antagonists | 2010 |
Inhibition of the bradycardic component of the von Bezold-Jarisch reflex and carotid chemoreceptor reflex by periaqueductal gray stimulation: involvement of medullary receptors.
Stimulation of the dorsolateral periaqueductal gray matter (dlPAG) and the B3 cell group inhibits the cardiovagal component of the baroreflex in rats. Our aim was to determine whether the defence reaction induces similar modulatory effects on the cardiac response of the von Bezold-Jarisch reflex and the carotid chemoreceptor reflex. We examined the effects of dlPAG stimulation on the reflex bradycardia triggered by systemic administration of phenylbiguanide or potassium cyanide. Electrical and chemical stimulation of the dlPAG produced marked inhibition of the cardiovagal components of the von Bezold-Jarisch and the carotid chemoreceptor reflexes. In addition, as 5-HT(3), NK(1) and GABA(A) receptor activation blocks cardiac reflex responses, we studied whether these receptors were involved in the dlPAG-induced inhibitory effects. We found that, after microinjection of granisetron (a 5-HT(3) receptor antagonist), bicuculline (a GABA(A) receptor antagonist) and GR-205171 (an NK(1) receptor antagonist) into the nucleus of the solitary tract (NTS), reflex bradycardic responses were preserved during dlPAG stimulation. Finally, activation of the B3 region also inhibited both reflex bradycardic responses, and these effects were prevented by prior blockade of 5-HT(3) receptors in the NTS. The inhibitory effect of dlPAG stimulation on the cardiac reflex responses was prevented by inhibition of neurons in the medullary B3 region. In conclusion, 5-HT(3), GABA(A) and NK(1) receptors in the NTS appear to be involved in the inhibition of the von Bezold-Jarisch reflex and the carotid chemoreceptor reflex bradycardia evoked by activation of neurons in the dlPAG and the raphé magnus. Topics: Animals; Bicuculline; Biguanides; Bradycardia; Carotid Arteries; Chemoreceptor Cells; GABA Antagonists; Granisetron; Immunohistochemistry; Male; Microinjections; Parasympathetic Nervous System; Periaqueductal Gray; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Receptors, Neurokinin-1; Receptors, Serotonin, 5-HT3; Reflex; Serotonin Agents; Solitary Nucleus; Sympathetic Nervous System; Tetrazoles | 2009 |
Excitability of small-diameter trigeminal ganglion neurons by 5-HT is mediated by enhancement of the tetrodotoxin-resistant sodium current due to the activation of 5-HT(4) receptors and/or by the inhibition of the transient potassium current.
The aims of the present study were to investigate whether the activation of the 5-HT receptor subtypes (5-HT(4) and 5-HT(3)) acted significantly on the modification of the tetrodotoxin-resistant sodium current (I(NaR)) in small-sized rat trigeminal ganglion (TG) neurons and whether the inhibition of the transient K(+) current (I(A)) contributed to the excitability in those neurons. 5-HT applications in at concentrations ranging from 0.01-10 microM significantly increased the peak I(NaR). One micromolar 5-HT application caused the greatest increase in the peak I(NaR) amplitude accompanied by a hyperpolarizing shift in the activation curve. A similar modification of I(NaR) properties was also obtained via the application of the 5-HT(4) receptor agonist, RS 67333, in concentrations ranging from 0.001-1 microM. The largest effects of 5-HT (1 microM) and RS 67333 (0.1 microM) on the modification of I(NaR) were abolished by pretreatment with ICS 205-930 (a 5-HT(3/4) receptor antagonist, 10 microM), which showed no significant effect on the baseline I(NaR). However, ICS 205-930 application at 30 microM caused a significant decrease in the baseline I(NaR). Phenylbiguanide (a 5-HT(3) receptor agonist) did not significantly alter I(NaR) properties when applied in concentrations ranging from 1 to 100 microM. The application of 0.1 microM RS 67333 decreased the transient K(+) current (I(A)) by approximately 31%. The threshold for action potential generation was significantly lower after the application of 0.1 microM RS 67333. Furthermore, 0.1 microM RS 67333 application increased the number of action potentials and the resting membrane potential got more positive, but it decreased the duration of depolarization phase of action potential. In addition, neither the additional application of 1 microM 5-HT in the presence of 10 microM forskolin, a stimulator of adenylyl cyclase, nor the opposite applications of 5-HT and forskolin caused the enhancement of increased I(NaR), which indicates the presence of an 'occluding effect.' These results suggest that the 5-HT-induced modification of I(NaR) is mediated by the activation of 5-HT(4) receptors, involving a cAMP-dependent signaling pathway, and that the inhibition of I(A) following the application of a 5-HT(4) receptor agonist also contributes to the increased number of action potentials. Topics: Aniline Compounds; Animals; Animals, Newborn; Antibodies, Heterophile; Biguanides; Biophysics; Cells, Cultured; Dose-Response Relationship, Drug; Electric Stimulation; Indoles; Membrane Potentials; Neurons; Patch-Clamp Techniques; Piperidines; Rats; Rats, Wistar; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Sodium Channel Blockers; Tetrodotoxin; Trigeminal Ganglion; Tropisetron | 2008 |
In vivo assessment of acetylcholine-releasing function at cardiac vagal nerve terminals.
We examined whether the ACh concentration measured by cardiac microdialysis provided information on left ventricular ACh levels under a variety of vagal stimulatory and modulatory conditions in anesthetized cats. Local administration of KCl (n = 5) and ouabain (n = 7) significantly increased the ACh concentration in the dialysate to 4.3 +/- 0.8 and 7.3 +/- 1.3 nmol/l, respectively, from the baseline value of 0.6 +/- 0.5 nmol/l. Intravenous administration of phenylbiguanide (n = 5) and phenylephrine (n = 6) significantly increased the ACh concentration to 5.4 +/- 0.9 and 6.0 +/- 1.5 nmol/l, respectively, suggesting that the Bezold-Jarisch and arterial baroreceptor reflexes affected myocardial ACh levels. Modulation of vagal nerve terminal function by local administration of tetrodotoxin (n = 6), hemicholinium-3 (n = 6), and vesamicol (n = 5) significantly suppressed the electrical stimulation-induced ACh release from 20.4 +/- 3.9 to 0.6 +/- 0.1, 7.2 +/- 1.9, and 2.7 +/- 0.6 nmol/l, respectively. Increasing the heart rate from 120 to 200 beats/min significantly reduced the myocardial ACh levels during electrical vagal stimulation, suggesting a heart rate-dependent washout of ACh. We conclude that ACh concentration measured by cardiac microdialysis provides information regarding ACh release and disposition under a variety of pathophysiological conditions in vivo. Topics: Acetylcholine; Animals; Biguanides; Cats; Heart Conduction System; Heart Rate; Heart Ventricles; Hemicholinium 3; Microdialysis; Myocardium; Nerve Endings; Phenylephrine; Piperidines; Potassium; Potassium Chloride; Tetrodotoxin; Vagus Nerve | 2001 |
5-HT3-like receptors in the rat medial prefrontal cortex: further pharmacological characterization.
The aim of the study was to further characterize the pharmacological properties of 5-hydroxytryptamine (5-HT)3-like receptors in the rat medial prefrontal cortex (mPFC) using combinations of biochemical and electrophysiological approaches. Phenylbiguanide (PBG) and three chlorinated derivatives, ortho-chloro-PBG (oCPBG), meta-chloro-PBG (mCPBG) and para-chloro-PBG (pCPBG), dose-dependently stimulated phosphoionositide (PI) turnover in fronto-cingulate cortical slices. All three chloro-isomers of PBG were equipotent in stimulating PI turnover. SR 57227A ((4-amino)-(6-chloro-2-pyridyl) L-piperidine hydrochloride, a novel compound with high affinity and selectivity for peripheral and central 5-HT3 receptors) dose-dependently stimulated PI turnover in fronto-cingulate cortical slices. The rank order of potency of all the 5-HT3 receptor agonists tested in the PI assay as compared to 5-HT was: 5-HT > 2-Me-5-HT > SR57227A > PBG = mCPBG = oCPBG = mCPBG. 5-HT and 5-HT receptor agonists depressed the firing rate of both spontaneously active and glutamate-activated quiescent mPFC cells in a current (dose)-dependent fashion. The rank order of effectiveness of these compounds was: 5-HT > SR57227A = 2-Me-5-HT = mCPBG = oCPBG = pCPBG = PBG. Unlike its action on the 5-HT3 receptors in the periphery or cultured cell lines, D-tubocurarine chloride appears to be non-specific in blocking the depressant action of 2-Me-5-HT, gamma-aminobutyric acid and dopamine. Our results combined support the view that the pharmacological properties of 5-HT3-like receptors in the mPFC are not identical to those located in peripheral tissues and in cultured cell lines. Topics: Animals; Biguanides; Bridged Bicyclo Compounds, Heterocyclic; Dose-Response Relationship, Drug; Drug Interactions; Electrophysiology; Frontal Lobe; Glutamic Acid; Gyrus Cinguli; Hydrolysis; Indoles; Isomerism; Male; Neurons; Nicotinic Antagonists; Phosphatidylinositols; Piperidines; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Receptors, Serotonin; Ritanserin; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Tubocurarine | 1996 |
5-HT3 receptor-active drugs alter development of spinal serotonergic innervation: lack of effect of other serotonergic agents.
Our work has focused on identifying the type of serotonin receptor through which serotonin acts as a developmental signal in the central nervous system. Previously, we have found that the regulation of development of ascending serotonergic neurons is through the balance of two serotonin receptors. One, the 5-HT1a receptor, releases a growth factor from astroglial cells. The other receptor is related to a release-regulating autoreceptor and can be stimulated indirectly by serotonin releasers such as fenfluramine. In the present study, we examined the receptors which regulate development of the descending neurons by treating pregnant rats with selective serotonergic drugs, from gestation day 12 until birth. Pups were subsequently tested for alterations in development by nociceptive testing (tail-flick latency) and by determining the binding of 3H-paroxetine, an indicator of serotonin terminal density, in spinal cord. Our results show that agents stimulating the 5-HT1a receptor (8-OH-DPAT) or the 5-HT1b receptor (TFMPP) or substances which release serotonin (fenfluramine) had no effect on the development of spinal serotonergic pathways. However, agents acting on the 5-HT3 receptor did--the agonist phenylbiguanide (PG) increased latency on tail-flick testing (postnatal days 10 and 30), while the antagonist, MDL 72222, decreased latency (postnatal days 10 and 18). Interestingly, both the agonist and the antagonist significantly increased 3H-paroxetine binding on postnatal day 18. Our results are discussed in terms of a possible mechanism by which 5-HT3 receptors may influence development. Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Aging; Animals; Biguanides; Female; Fenfluramine; Hypoglycemic Agents; Maternal-Fetal Exchange; Neurons; Pain; Paroxetine; Piperazines; Piperidines; Pregnancy; Rats; Rats, Inbred Strains; Receptors, Serotonin; Serotonin; Serotonin Antagonists; Spinal Cord; Tetrahydronaphthalenes; Tropanes | 1992 |