piperidines and pepstatin

piperidines has been researched along with pepstatin* in 2 studies

Other Studies

2 other study(ies) available for piperidines and pepstatin

ArticleYear
Development and characterization of beta-secretase monolithic micro-immobilized enzyme reactor for on-line high-performance liquid chromatography studies.
    Journal of chromatography. A, 2007, Dec-21, Volume: 1175, Issue:2

    beta-Site APP cleavage enzyme 1 (BACE-1) is a transmembrane aspartyl protease that cleaves the amyloid-beta precursor protein (APP), which is abundant in neurons. BACE-1 is required for the generation of amyloid-beta (Abeta) peptides implicated in the pathogenesis of Alzheimer's disease (AD). It is widely believed that halting the production of Abeta peptide, by inhibition of BACE-1, is an attractive therapeutic modality for the treatment of Alzheimer's disease. BACE-1 has never been immobilized before. In the present study, for the first time, human recombinant beta-secretase micro-immobilised enzyme reactor (hrBACE-1-micro-IMER) was prepared by using an in situ immobilisation procedure on an ethylendiamine monolithic convective interaction media (EDA-CIM) disk. The activity and kinetic parameters of the hrBACE-1-micro-IMER were investigated by insertion in a HPLC system with fluorescent and mass detection. The micro-IMER was characterized in terms of units of immobilised hrBACE-1 and best mobile phase conditions for activity, by using as substrate casein-FITC and JMV2236, a peptide mimicking the Swedish-mutated APP (amyloid precursor protein) sequence. The characterization of the hrBACE-1-micro-IMER in terms of number of enzymatic active units after covalent linking to the solid matrix was performed by using the JMV2236 peptide as substrate in a HPLC-MS system. JMV2236 was injected into the hrBACE-1-micro-IMER and enzymatically cleaved; the product of the enzymatic cleavage and the remaining non-cleaved substrate were collected on a C18 column trap and switched to the LC-electrospray ionization MS system for kinetic constants determination. Inhibition studies were carried out. The effect of donepezil and pepstatin A, as BACE-1 inhibitors, was evaluated by simultaneous injection of the compounds with the peptidic substrate. The relative IC(50) values were found in agreement with that derived by the conventional fluorescence method, confirming the applicability of this new IMER for on-line inhibition studies. The main advantages of the hrBACE-1-micro-IMER approach over the conventional methods were found to be the increased enzyme efficiency, stability and the decreased time of analysis.

    Topics: Amyloid Precursor Protein Secretases; Aspartic Acid Endopeptidases; Caseins; Chromatography, High Pressure Liquid; Donepezil; Enzymes, Immobilized; Indans; Pepstatins; Piperidines; Spectrometry, Mass, Electrospray Ionization

2007
Novel inhibition of porcine pepsin by a substituted piperidine. Preference for one of the enzyme conformers.
    The Journal of biological chemistry, 2002, Aug-09, Volume: 277, Issue:32

    Pepsin inhibition by 3-alkoxy-4-arylpiperidine (substituted piperidine; (3R,4R)-3-(4-bromobenzyloxy)-4-[4-(2-naphthalen-1-yl-2-oxo-ethoxy)phenyl]piperidine) has been studied using steady-state kinetic and pre-equilibrium binding methods. Data were compared with pepstatin A, a well known competitive inhibitor of pepsin. Steady-state analysis reveals that the substituted piperidine likewise behaves as a competitive inhibitor. Pre-equilibrium binding studies indicate that the substituted piperidine can displace a fluorescently labeled statine inhibitor from the enzyme active site. Simulation of the stopped-flow fluorescence transients provided estimates of the K(d) values of 1.4 +/- 0.2 microm and 39 +/- 2 nm for the piperidine and the fluorescently labeled statine, respectively. The effects of combinations of these two inhibitors resulted in a series of parallel lines when plotted by the method of Yonetani and Theorell (Yonetani, T., and Theorell, H. (1964) Arch. Biochem. Biophys. 106, 234-251), suggesting that the two inhibitors bind in a mutually exclusive fashion to pepsin. Fitting of the entire data set to the appropriate equation yielded an alpha factor of 8 +/- 1. The magnitude of this factor ( infinity > alpha > 1) can be explained by a conformational distinction between the enzyme species that bind each inhibitor. The effects of pH on the inhibition constants for pepstatin A and the substituted piperidine also suggest that the inhibitors bind to distinct conformational forms of the enzyme. No inhibition by the piperidine was observed at acidic pH, while pepstatin A inhibition is maximal at low pH values. Inhibition by the piperidine was maximal when a group with pK 4.8 +/- 0.2 was deprotonated and another group with pK 5.9 +/- 0.2 was protonated. Most likely these two groups are the catalytic aspartates with perturbed ionization properties as a result of a significant and unique conformational change. Taken together, these data suggest that the enzyme can readily interconvert between two conformers, one capable of binding substrate and pepstatin A and the other capable of binding the substituted piperidine.

    Topics: Animals; Aspartic Acid Endopeptidases; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hydrogen-Ion Concentration; Kinetics; Models, Chemical; Pepsin A; Pepstatins; Peptides; Piperidines; Protein Binding; Protein Conformation; Spectrometry, Fluorescence; Substrate Specificity; Swine; Time Factors

2002