piperidines has been researched along with methyllycaconitine* in 5 studies
5 other study(ies) available for piperidines and methyllycaconitine
Article | Year |
---|---|
Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex.
The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in α7 nicotinic acetylcholine receptors (α7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510-1512]; however, little is known about how α7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477-485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore α7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of α7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110-1114]. We additionally show that α7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to α7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia. Topics: Acetylcholine; Aconitine; alpha7 Nicotinic Acetylcholine Receptor; Analysis of Variance; Animals; Bridged Bicyclo Compounds, Heterocyclic; Cholinergic Agonists; Cholinergic Antagonists; Cognition; Female; Iontophoresis; Macaca mulatta; Male; Mecamylamine; Microscopy, Immunoelectron; N-Methylaspartate; Phenols; Piperidines; Prefrontal Cortex; Quinuclidines; Receptors, Nicotinic; Spatial Behavior; Synapses; Visual Perception | 2013 |
Galantamine and donepezil differently affect isolation rearing-induced deficits of prepulse inhibition in mice.
Previous studies have shown that alterations in acetylcholine (ACh) receptor subtypes might contribute to cognitive impairment observed in schizophrenia and that choline acetyltransferase activity in the parietal cortex is negatively correlated with the severity of such cognitive impairment. However, clinical data suggest that the acetylcholinesterase (AChE) inhibitors galantamine and donepezil have different effects on negative and cognitive symptoms in schizophrenia. Prepulse inhibition (PPI) deficits--sensory information-processing deficits observed in schizophrenia--may be useful models for studying the efficacy of AChE inhibitors as cognitive enhancers.. The present study examined the effects of galantamine and donepezil on PPI deficits induced by an environmental factor and drugs.. In the isolation-rearing model, 3-week-old male ddY mice were housed either in groups of five or six per cage or isolated in cages of the same size for more than 6 weeks. In the drug-induced model, apomorphine 1 mg/kg and MK-801 0.2 mg/kg were administered to 9- to 10-week-old male ddY mice.. In isolation-reared mice, galantamine attenuated PPI deficits, while donepezil did not. Galantamine and donepezil both attenuated PPI deficits induced by apomorphine, but not by MK-801. The galantamine-induced improvements in PPI deficits were not prevented by the nicotinic ACh receptor antagonists mecamylamine and methyllycaconitine.. These observations suggest that galantamine and donepezil have different effects on the environmentally induced PPI deficits and that these observations may be relevant to the different effects of these drugs observed clinically in schizophrenia. Topics: Aconitine; Acoustic Stimulation; alpha7 Nicotinic Acetylcholine Receptor; Analysis of Variance; Animals; Animals, Outbred Strains; Apomorphine; Behavior, Animal; Cholinesterase Inhibitors; Dizocilpine Maleate; Donepezil; Dose-Response Relationship, Drug; Galantamine; Indans; Male; Mecamylamine; Mice; Neural Inhibition; Nicotinic Antagonists; Piperidines; Receptors, Nicotinic; Reflex, Startle; Risperidone; Social Isolation | 2008 |
Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors.
Donepezil, rivastigmine, and galantamine are three drugs with acetylcholinesterase (AChE)-inhibiting activity that are currently being used to treat patients suffering from Alzheimer's disease. We have studied the neuroprotective effects of these drugs, in comparison with nicotine, on cell death caused by beta-amyloid (Abeta) and okadaic acid, two models that are relevant to Alzheimer's pathology, in the human neuroblastoma cell line SH-SY5Y. Galantamine and donepezil showed a U-shaped neuroprotective curve against okadaic acid toxicity; maximum protection was achieved at 0.3 microM galantamine and at 1 microM donepezil; at higher concentrations, protection was diminished. Rivastigmine showed a concentration-dependent effect; maximum protection was achieved at 3 microM. When apoptosis was induced by Abeta25-35, galantamine, donepezil, and rivastigmine showed maximum protection at the same concentrations: 0.3, 1, and 3 microM, respectively. Nicotine also afforded protection against Abeta- and okadaic acid-induced toxicity. The neuroprotective effects of galantamine, donepezil, and nicotine were reversed by the alpha7 nicotinic antagonist methyllycaconitine but not by the alpha4beta2 nicotinic antagonist dihydro-beta-erythroidine. The phosphoinositide 3-kinase (PI3K)-Akt blocker 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) reversed the protective effects of galantamine, donepezil, and nicotine but not that of rivastigmine. In contrast, the bcl-2 antagonist ethyl[2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)]-4H-chromene-3-carboxylate (HA 14-1) reversed the protective effects of the three AChE inhibitors and that of nicotine. Our results show that galantamine, donepezil, and rivastigmine afford neuroprotection through a mechanism that is likely unrelated to AChE inhibition. Such neuroprotection seemed to be linked to alpha7 nicotinic receptors and the PI3K-Akt pathway in the case of galantamine and donepezil but not for rivastigmine. Topics: Aconitine; Amyloid beta-Peptides; Apoptosis; Benzopyrans; Cell Culture Techniques; Cell Line, Tumor; Cholinesterase Inhibitors; Chromones; Donepezil; Dose-Response Relationship, Drug; Enzyme Inhibitors; Galantamine; Humans; Indans; L-Lactate Dehydrogenase; Morpholines; Neuroblastoma; Neuroprotective Agents; Nicotine; Nitriles; Okadaic Acid; Phenylcarbamates; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-bcl-2; Receptors, Nicotinic; Rivastigmine | 2005 |
Spinal muscarinic and nicotinic subtypes activated by clonidine in postincisional pain.
A recent model of acute incisional pain has been characterized that strongly parallels the postoperative period in patients experiencing evoked pain. In that setting, abundant literature has revealed antihypersensitive effects produced by intrathecally administered alpha2-adrenergic receptor agonists, such as clonidine, in both animals and humans. Recent reports have suggested an obligatory role of spinal acetylcholine receptors in the analgesic action of intrathecal clonidine. The authors sought to determine the involvement of spinal muscarinic and nicotinic receptor subpopulations in the antihypersensitivity effect of intrathecal clonidine in a rodent model for human postoperative pain.. After intrathecal catheterization, rats underwent superficial plantar incision. Clonidine or a combination of clonidine and muscarinic receptor subtype antagonists (M1, M2, M3, and M4) or nicotinic receptor subtype antagonists (alpha4beta2 and alpha7) were intrathecally administered, and withdrawal thresholds to mechanical stimuli were examined.. Spinal clonidine maximally reduced hypersensitivity adjacent to the wound 30 min after its injection. When animals were intrathecally pretreated with the M1 muscarinic antagonist toxin MT-7, the M3 muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine, and the M4 muscarinic antagonist toxin MT-3, clonidine lost its antihypersensitive action. When animals were intrathecally pretreated with the alpha4beta2 nicotinic receptor antagonist dihydro-beta-erythroidine, but not with the alpha7 nicotinic receptor antagonist methyllycaconitine, the antihypersensitivity action of clonidine was abolished.. These data indicate for the first time that the clonidine-induced increase in punctuate mechanical threshold is mediated via the activation of all but M2 muscarinic receptor subtypes, and via the activation of alpha4beta2 but not alpha7 nicotinic receptor subtypes in a rodent model for human postoperative pain. Topics: Aconitine; Adrenergic alpha-Agonists; Animals; Behavior, Animal; Clonidine; Diamines; Dihydro-beta-Erythroidine; Injections, Spinal; Male; Muscarinic Agonists; Nicotinic Agonists; Pain; Piperidines; Rats; Rats, Sprague-Dawley; Receptor, Muscarinic M1; Receptor, Muscarinic M2; Receptors, Muscarinic; Receptors, Nicotinic; Spine | 2005 |
Effects of donepezil treatment on rat nicotinic acetylcholine receptor levels in vivo and in vitro.
Research on acetylcholinesterase inhibitors (ChEIs) indicates that long term exposure increases the level of nicotinic acetylcholine receptors (nAChRs) but the effects of donepezil on nAChRs are not well studied. Therefore, we investigated the effects of sub-chronic donepezil administration on nAChRs in rats and rat pheochromocytoma PC-12 cells. Male Sprague Dawley rats were administered donepezil (0.7 and 2.4 micromoles/kg), nicotine (2.5 micromoles/kg) or saline subcutaneously twice daily for 14 days, PC-12 cells were incubated with 10(-6) to 10(-4) M donepezil for 72 hours and nAChR levels were determined by receptor binding assay using the nAChR ligands [3H]-epibatidine (EPI) for non-alpha 7 nAChRs and [3H]-methyllyconitine (MLA) for alpha 7 nAChRs. Chronic donepezil administration at 1.4 micromoles/kg/day and 4.8 micromoles/ kg/day significantly increased [3H]-epibatidine binding in the cortex to 126 +/- 1.3% and 127 +/- 3.2% of the saline control animals, respectively. [3H]-MLA binding in the cortex increased to 114 +/- 4.4% and 124 +/- 2.8% of the control group for the high and low dose groups, respectively. Hippocampal [3H]-EPI binding in the low dose and high dose groups significantly increased to 135 +/- 3.6% and 125 +/- 4.6% of the controls, respectively while there were no changes in the level of [3H]-MLA binding. In striatal homogenates, neither [3H]-EPI nor [3H]-MLA binding were significantly effected at either dose of donepezil. In PC-12 cells, [3H]-EPI binding was increased at the non-physiological 10(-4)M concentration only. There was no effect of donepezil on [3H]-MLA binding at any concentration examined. These results indicate that donepezil increases cortical alpha 7 and non-alpha 7 nAChRs, hippocampal non-alpha 7 nAChRs but does not influence striatal nAChR levels. Furthermore, the lack of an effect on the alpha 7-nAChRs in PC-12 cells suggests that the increase in cortical alpha 7 nAChRs may be an indirect effect of increased acetylcholine levels in vivo. Topics: Aconitine; Animals; Binding Sites; Bridged Bicyclo Compounds, Heterocyclic; Cholinesterase Inhibitors; Donepezil; Drug Administration Schedule; Hippocampus; In Vitro Techniques; Indans; Male; Nicotinic Agonists; Nicotinic Antagonists; Pheochromocytoma; Piperidines; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic | 2003 |