piperidines and methylimidazoleacetic-acid

piperidines has been researched along with methylimidazoleacetic-acid* in 2 studies

Other Studies

2 other study(ies) available for piperidines and methylimidazoleacetic-acid

ArticleYear
Development and validation of a sample stabilization strategy and a UPLC-MS/MS method for the simultaneous quantitation of acetylcholine (ACh), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF).
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2011, Jul-15, Volume: 879, Issue:22

    A UPLC-MS/MS assay was developed and validated for simultaneous quantification of acetylcholine (ACh), histamine (HA), tele-methylhistamine (t-mHA), and tele-methylimidazolacetic acid (t-MIAA) in rat cerebrospinal fluid (CSF). The biological stability of ACh in rat CSF was investigated. Following fit-for-purpose validation, the method was applied to monitor the drug-induced changes in ACh, HA, t-mHA, and t-MIAA in rat CSF following administration of donepezil or prucalopride. The quantitative method utilizes hydrophilic interaction chromatography (HILIC) Core-Shell HPLC column technology and a UPLC system to achieve separation with detection by positive ESI LC-MS/MS. This UPLC-MS/MS method does not require extraction or derivatization, utilizes a stable isotopically labeled internal standard (IS) for each analyte, and allows for rapid throughput with a 4 min run time. Without an acetylcholinesterase (AChE) inhibitor present, ACh was found to have 1.9±0.4 min in vitro half life in rat CSF. Stability studies and processing modification, including the use of AChE inhibitor eserine, extended this half life to more than 60 min. The UPLC-MS/MS method, including stabilization procedure, was validated over a linear concentration range of 0.025-5 ng/mL for ACh and 0.05-10 ng/mL for HA, t-mHA, and t-MIAA. The intra-run precision and accuracy for all analytes were 1.9-12.3% CV and -10.2 to 9.4% RE, respectively, while inter-run precision and accuracy were 4.0-16.0% CV and -5.3 to 13.4% RE, respectively. By using this developed and validated method, donepezil caused increases in ACh levels at 0.5, 1, 2, and 4h post dose as compared to the corresponding vehicle group, while prucalopride produced approximately 1.6- and 3.1-fold increases in the concentrations of ACh and t-mHA at 1h post dose, respectively, compared to the vehicle control. Overall, this methodology enables investigations into the use of CSF ACh and HA as biomarkers in the study of these neurotransmitter systems and related drug discovery efforts.

    Topics: Acetylcholine; Animals; Benzofurans; Cholinesterase Inhibitors; Chromatography, High Pressure Liquid; Donepezil; Drug Stability; Histamine; Hydrophobic and Hydrophilic Interactions; Imidazoles; Indans; Male; Methylhistamines; Piperidines; Rats; Rats, Sprague-Dawley; Reproducibility of Results; Sensitivity and Specificity; Tandem Mass Spectrometry

2011
Effects of histamine H3-receptor ligands on brain monoamine oxidase in various mammalian species.
    Brain research, 2001, Jul-06, Volume: 906, Issue:1-2

    The effects of an H3 agonist, R-alpha-methylhistamine (alpha-MeHA), and an H3 antagonist, thioperamide, on monoamine oxidase (MAO) activity in the hypothalamus of rat, monkey and human brains were compared in vitro. The histamine H(3)-receptor ligands competitively inhibited MAO-B, but noncompetitively inhibited MAO-A in all three mammalian species. However, alpha-MeHA inhibited MAO-A more potently than MAO-B at high concentrations in all three species. The K(i) values for MAO-A of alpha-MeHA in hypothalamic homogenates of rat, monkey and human brains were estimated to be 1.1, 1.2 and 1.9 mM, respectively, suggesting that alpha-MeHA cannot behave as a substrate for the MAO inhibitor. In contrast, rat, monkey and human brain MAO-B activities were inhibited by thioperamide, with respective K(i) values of 174.6, 8.2 and 10.8 microM, more potently than MAO-A activity. These results indicate that thioperamide, which elicits a strong activation of histamine release and turnover to N-tele-methylhistamine from histamine, competitively inhibits the conversion of N-tele-methylhistamine to N-tele-methylimidazoleacetic acid in human and monkey brains where MAO-B predominates.

    Topics: Aged; Animals; Binding, Competitive; Dose-Response Relationship, Drug; Histamine; Histamine Agonists; Histamine Antagonists; Humans; Hypothalamus; Imidazoles; Ligands; Macaca; Methylhistamines; Middle Aged; Monoamine Oxidase; Neurons; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Histamine H3; Subcellular Fractions; Synaptic Transmission

2001