piperidines has been researched along with linopirdine* in 2 studies
2 other study(ies) available for piperidines and linopirdine
Article | Year |
---|---|
The muscarinic inhibition of the potassium M-current modulates the action-potential discharge in the vestibular primary-afferent neurons of the rat.
There is consensus that muscarinic and nicotinic receptors expressed in vestibular hair cells and afferent neurons are involved in the efferent modulation of the electrical activity of the afferent neurons. However the underlying mechanisms of postsynaptic control in neurons are not well understood. In our work we show that the activation of muscarinic receptors in the vestibular neurons modulates the potassium M-current modifying the activity of afferent neurons. Whole-cell patch-clamp recordings were made on vestibular-afferent neurons isolated from Wistar rats (postnatal days 7-10) and held in primary culture (18-24 h). The M-current was studied during its deactivation after depolarizing voltage-clamp pulses. In 68% of the cells studied, those of larger capacitance, the M-current antagonists linopirdine and XE-991 reduced the amplitude of the M-current by 54%+/-7% and 50%+/-3%. The muscarinic-receptor agonist oxotremorine-M also significantly reduced the M-current by 58%+/-12% in the cells. The action of oxotremorine-M was blocked by atropine, thus indicating its cholinergic nature. The erg-channel blocker E-4031 did not significantly modify the M-current amplitude. In current-clamp experiments, linopirdine, XE-991, and oxotremorine-M modified the discharge response to current pulses from single spike to multiple spiking, reducing the adaptation of the electrical discharge. Our results indicate that large soma-size cultured vestibular-afferent neurons (most probably calyx-bearing neurons) express the M-current and that the modulation of this current by activation of muscarinic-receptor reduces its spike-frequency adaptation. Topics: Action Potentials; Animals; Animals, Newborn; Anthracenes; Atropine; Biophysical Phenomena; Calcium Channel Blockers; Cells, Cultured; Indoles; Muscarinic Agonists; Muscarinic Antagonists; Neurons, Afferent; Oxotremorine; Patch-Clamp Techniques; Piperidines; Potassium Channel Blockers; Potassium Channels; Pyridines; Rats; Rats, Wistar; Receptors, Muscarinic; Vestibule, Labyrinth | 2009 |
Separation of M-like current and ERG current in NG108-15 cells.
Differentiated NG108-15 neuroblastoma x glioma hybrid cells were whole-cell voltage-clamped. Hyperpolarizing pulses, superimposed on a depolarized holding potential (-30 or -20 mV), elicited deactivation currents which consisted of two components, distinguishable by fitting with two exponential functions. Linopirdine [DuP 996, 3,3-bis(4-pyridinylmethyl)-1-phenylindolin-2-one), a neurotransmitter-release enhancer known as potent and selective blocker of the M-current of rat sympathetic neurons, in concentrations of 5 or 10 microM selectively inhibited the fast component (IC50 = 14.7 microM). The slow component was less sensitive to linopirdine (IC50>20 microM). The class III antiarrhythmics [(4-methylsulphonyl)amido]benzenesulphonamide (WAY-123.398) and 1-[2-(6-methyl-2-pyrydinil)ethyl]-4-(4-methylsulphonylaminobenz oyl) piperidine (E-4031), selective inhibitors of the inwardly rectifying ERG (ether-à-go-go-related gene) potassium channel, inhibited predominantly the slow component (IC50 = 38 nM for E-4031). The time constant of the WAY-123.398-sensitive current resembled the time constant of the slow component in size and voltage dependence. Inwardly rectifying ERG currents, recorded in K+ -rich bath at strongly negative pulse potentials, resembled the slow component of the deactivation current in their low sensitivity to linopirdine (28% inhibition at 50 microM). The size of the slow component varied greatly between cells. Accordingly, varied the effect of WAY-123.398 on deactivation current and holding current. RNA transcripts for the following members of the ether-à-go-go gene (EAG) K+ channel family were found in differentiated NG108-15 cells: ERG1, ERG2, EAGI, EAG-like (ELK)1, ELK2; ERG3 was only present in non-differentiated cells. In addition, RNA transcripts for KCNQ2 and KCNQ3 were found in differentiated and non-differentiated cells. We conclude that the fast component of the deactivation current is M-like current and the slow component is deactivating ERG current. The molecular correlates are probably KCNQ2/KCNQ3 and ERG1/ERG2, respectively. Topics: Animals; Benzimidazoles; Bradykinin; Cation Transport Proteins; Ether-A-Go-Go Potassium Channels; Indoles; KCNQ2 Potassium Channel; KCNQ3 Potassium Channel; Membrane Transport Proteins; Mice; Neuroblastoma; Piperidines; Potassium Channels; Potassium Channels, Voltage-Gated; Pyridines; Rats; Sulfanilamides; Sympathetic Nervous System; Tumor Cells, Cultured | 1999 |