piperidines and lestaurtinib

piperidines has been researched along with lestaurtinib* in 4 studies

Reviews

2 review(s) available for piperidines and lestaurtinib

ArticleYear
FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions.
    Leukemia, 2020, Volume: 34, Issue:3

    The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in approximately one third of patients with acute myeloid leukemia (AML), either by internal tandem duplications (FLT3-ITD), or by a point mutation mainly involving the tyrosine kinase domain (FLT3-TKD). Patients with FLT3-ITD have a high risk of relapse and low cure rates. Several FLT3 tyrosine kinase inhibitors have been developed in the last few years with variable kinase inhibitory properties, pharmacokinetics, and toxicity profiles. FLT3 inhibitors are divided into first generation multi-kinase inhibitors (such as sorafenib, lestaurtinib, midostaurin) and next generation inhibitors (such as quizartinib, crenolanib, gilteritinib) based on their potency and specificity of FLT3 inhibition. These diverse FLT3 inhibitors have been evaluated in myriad clinical trials as monotherapy or in combination with conventional chemotherapy or hypomethylating agents and in various settings, including front-line, relapsed or refractory disease, and maintenance therapy after consolidation chemotherapy or allogeneic stem cell transplantation. In this practical question-and-answer-based review, the main issues faced by the leukemia specialists on the use of FLT3 inhibitors in AML are addressed.

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Carbazoles; DNA Methylation; Enzyme Inhibitors; fms-Like Tyrosine Kinase 3; Furans; Humans; Leukemia, Myeloid, Acute; Mutation; Neoplasm Recurrence, Local; Phenylurea Compounds; Piperidines; Prognosis; Pyrazines; Randomized Controlled Trials as Topic; Sorafenib; Staurosporine; Treatment Outcome

2020
FLT3 inhibitors in the treatment of acute myeloid leukemia: current status and future perspectives.
    Minerva medica, 2020, Volume: 111, Issue:5

    Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene arise in 25-30% of all acute myeloid leukemia (AML) patients. These mutations lead to constitutive activation of the protein product and are divided in two broad types: internal tandem duplication (ITD) of the juxtamembrane domain (25% of cases) and point mutations in the tyrosine kinase domain (TKD). Patients with FLT3 ITD mutations have a high relapse risk and inferior cure rates, whereas the role of FLT3 TKD mutations still remains to be clarified. Additionally, growing research indicates that FLT3 status evolves through a disease continuum (clonal evolution), where AML cases can acquire FLT3 mutations at relapse - not present in the moment of diagnosis. Several FLT3 inhibitors have been tested in patients with FLT3-mutated AML. These drugs exhibit different kinase inhibitory profiles, pharmacokinetics and adverse events. First-generation multi-kinase inhibitors (sorafenib, midostaurin, lestaurtinib) are characterized by a broad-spectrum of drug targets, whereas second-generation inhibitors (quizartinib, crenolanib, gilteritinib) show more potent and specific FLT3 inhibition, and are thereby accompanied by less toxic effects. Notwithstanding, all FLT3 inhibitors face primary and acquired mechanisms of resistance, and therefore the combinations with other drugs (standard chemotherapy, hypomethylating agents, checkpoint inhibitors) and its application in different clinical settings (upfront therapy, maintenance, relapsed or refractory disease) are under study in a myriad of clinical trials. This review focuses on the role of FLT3 mutations in AML, pharmacological features of FLT3 inhibitors, known mechanisms of drug resistance and accumulated evidence for the use of FLT3 inhibitors in different clinical settings.

    Topics: Aniline Compounds; Antineoplastic Agents; Benzimidazoles; Benzothiazoles; Carbazoles; Drug Resistance, Multiple; Drug Resistance, Neoplasm; fms-Like Tyrosine Kinase 3; Forecasting; Furans; Hematopoietic Stem Cell Transplantation; Humans; Imidazoles; Leukemia, Myeloid, Acute; Maintenance Chemotherapy; Mutation; Phenylurea Compounds; Piperidines; Point Mutation; Protein Kinase Inhibitors; Pyrazines; Pyridazines; Recurrence; Sorafenib; Staurosporine

2020

Other Studies

2 other study(ies) available for piperidines and lestaurtinib

ArticleYear
Crystal structures of PRK1 in complex with the clinical compounds lestaurtinib and tofacitinib reveal ligand induced conformational changes.
    PloS one, 2014, Volume: 9, Issue:8

    Protein kinase C related kinase 1 (PRK1) is a component of Rho-GTPase, androgen receptor, histone demethylase and histone deacetylase signaling pathways implicated in prostate and ovarian cancer. Herein we describe the crystal structure of PRK1 in apo form, and also in complex with a panel of literature inhibitors including the clinical candidates lestaurtinib and tofacitinib, as well as the staurosporine analog Ro-31-8220. PRK1 is a member of the AGC-kinase class, and as such exhibits the characteristic regulatory sequence at the C-terminus of the catalytic domain--the 'C-tail'. The C-tail fully encircles the catalytic domain placing a phenylalanine in the ATP-binding site. Our inhibitor structures include examples of molecules which both interact with, and displace the C-tail from the active site. This information may assist in the design of inhibitors targeting both PRK and other members of the AGC kinase family.

    Topics: Apoenzymes; Carbazoles; Crystallography, X-Ray; Furans; Humans; Ligands; Piperidines; Protein Conformation; Protein Kinase C; Protein Kinase Inhibitors; Pyrimidines; Pyrroles

2014
Future research directions for the treatment of AML.
    Clinical advances in hematology & oncology : H&O, 2008, Volume: 6, Issue:11

    Topics: Antineoplastic Agents; Azacitidine; Biomedical Research; Carbazoles; Carboplatin; Cytarabine; Daunorubicin; Decitabine; Enzyme Inhibitors; Etoposide; Flavonoids; Furans; Humans; Leukemia, Myeloid, Acute; Mitoxantrone; Piperidines; Quinolones; Staurosporine; Topotecan; Tretinoin

2008