piperidines and igmesine

piperidines has been researched along with igmesine* in 4 studies

Other Studies

4 other study(ies) available for piperidines and igmesine

ArticleYear
Some of the effects of the selective sigma ligand (+)pentazocine are mediated via a naloxone-sensitive receptor.
    Synapse (New York, N.Y.), 2001, Mar-15, Volume: 39, Issue:4

    Recently, in an attempt to isolate the nonopioid sigma receptor, Su and colleagues purified a protein from rat liver and brain which appeared to resemble the original sigma opioid receptor as proposed by Martin in 1976, and for which the nonopiate sigma-1 ligand (+)pentazocine presents a high affinity. Previous in vivo electrophysiological studies from our laboratory have demonstrated that several selective sigma-1 ligands potentiate the neuronal response to NMDA. The goal of the present series of experiments was to assess the effects of some selective sigma-1 ligands on the potentiation of the NMDA response and to determine if this potentiation was mediated by the naloxone-sensitive sigma receptor. Extracellular unitary recordings from pyramidal neurons of the CA3 region of the rat dorsal hippocampus were obtained. The sigma-1 ligands BD 737, L 687-384, and JO-1784 (igmesine), administered intravenously at low doses, potentiated the NMDA response but the opiate antagonist naloxone failed to reverse this potentiation. However, the potentiation of the NMDA response induced by the sigma-1 ligand (+)pentazocine was suppressed by naloxone but not by the mu antagonist cyprodime hydrobomide, the kappa antagonist DIPPA nor by the delta antagonist naltrindole. (+/-) Cyclazocine, which presents a high affinity for the above-mentioned sigma-opiate receptor acted as an antagonist by suppressing the potentiation of the NMDA response induced by both JO-1784 and (+)pentazocine. These results suggest that the effects induced by some sigma-1 ligands may, in fact, be sensitive to naloxone while others may not. The original classification of sigma receptors as opiates might have been partly accurate.

    Topics: Action Potentials; Animals; Cinnamates; Cyclazocine; Cyclohexylamines; Cyclopropanes; Excitatory Amino Acid Agonists; Injections, Intravenous; Male; N-Methylaspartate; Naloxone; Narcotic Antagonists; Pentazocine; Piperidines; Pyramidal Cells; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, sigma

2001
Effects of low and high doses of selective sigma ligands: further evidence suggesting the existence of different subtypes of sigma receptors.
    Psychopharmacology, 1997, Volume: 129, Issue:3

    Several high affinity sigma (sigma) ligands, such as DTG, JO-1784, (+)-pentazocine, BD-737 and L-687,384, administered at low doses act as agonists by potentiating N-methyl-D-aspartate (NMDA)-induced activation of pyramidal neurons in the CA3 region of the rat dorsal hippocampus. This potentiation is dose-dependent at doses between 1 and 1000 micrograms/kg, IV but bell-shaped dose-response curves are obtained. Other sigma ligands like haloperidol, BMY-14802, (+)3-PPP and NE-100 administered at low doses act as sigma antagonists, since they do not modify the NMDA response but suppress the potentiation of the NMDA response induced by sigma agonists. Because high doses of the sigma agonists do not potentiate the NMDA response, the present experiments were undertaken to assess if, at high doses, these sigma ligands could also act as sigma antagonists and suppress the potentiation induced by low doses of sigma agonists. High doses of DTG, JO-1784, BD-737, and L-687,384, administered acutely, had an effect similar to that of low doses of haloperidol, by suppressing and preventing the potentiation induced by low doses of DTG, JO-1784, BD-737, L-687,384 and (+)-pentazocine. High doses of (+)-pentazocine suppressed the effect of a low dose of (+)-pentazocine but did not affect the potentiation induced by a low dose of the other sigma agonists. The potentiation induced by a low dose of a sigma 1 agonist was not further increased by the subsequent administration of another low dose of a sigma 1 agonist. All together, these results strongly suggest that more than two subtypes of sigma receptors exist in the CNS.

    Topics: Animals; Cinnamates; Cyclohexylamines; Cyclopropanes; Dose-Response Relationship, Drug; Drug Interactions; Electrophysiology; Excitatory Amino Acid Agonists; Guanidines; Hippocampus; Ligands; Male; N-Methylaspartate; Neurons; Pentazocine; Piperidines; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, sigma

1997
Modulation by sigma ligands of N-methyl-D-aspartate-induced [3H]noradrenaline release in the rat hippocampus: G-protein dependency.
    Naunyn-Schmiedeberg's archives of pharmacology, 1992, Volume: 346, Issue:1

    The effects of the high affinity sigma (sigma) ligands 1,3-di(2-tolyl)guanidine (DTG), (+)N-cyclopropylmethyl-N-methyl-1,4-diphenyl-1- ethyl-but-3-en-1-yl-amine hydrochloride (JO-1784), (+)3-[3-hydroxyphenyl]-N-(1-propyl)piperidine hydrochloride [(+)3-PPP] and haloperidol were studied on N-methyl-D-aspartate (NMDA)-evoked release of [3H]noradrenaline (NA) from preloaded hippocampal slices made from Sprague-Dawley rats. The [3H]NA release was evoked once by a 4 min exposure to NMDA, 40 min after the beginning of superfusion with a Mg+(+)-free Krebs' solution. In the absence of any drug, NMDA evoked a concentration-dependent [3H]NA release. Mg++ and EGTA abolished the [3H]NA release induced by NMDA. JO-1784 and (+)3-PPP potentiated in a concentration-dependent manner NMDA-induced [3H]NA release, without affecting the basal outflow. DTG concentration-dependently inhibited the overflow of [3H]NA evoked by NMDA, without affecting the basal efflux. Haloperidol, which did not modify NMDA-evoked [3H]NA release by itself, completely prevented the effects of JO-1784, (+)3-PPP and DTG. In contrast, spiperone, also a potent dopamine receptor antagonist but with low affinity for sigma binding sites, failed to prevent the potentiation of NMDA-evoked release of [3H]NA by JO-1784 and (+)3-PPP. The possible involvement of Gi/o proteins in the modulation by sigma ligands of NMDA-evoked [3H]NA release in the rat hippocampus was also investigated. To this end, Gi/o proteins were inactivated with pertussis toxin (PTX), injected locally 3 to 11 days prior to the experiment or with in vitro preincubation with N-ethylmaleimide (NEM) for 30 min prior the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Calcium; Cinnamates; Cyclopropanes; Dose-Response Relationship, Drug; Ethylmaleimide; GTP-Binding Proteins; Guanidines; Haloperidol; Hippocampus; In Vitro Techniques; Magnesium; Male; N-Methylaspartate; Norepinephrine; Pertussis Toxin; Piperidines; Rats; Rats, Inbred Strains; Spiperone; Tritium; Virulence Factors, Bordetella

1992
Evidence for an anti-amnesic effect of JO 1784 in the rat: a potent and selective ligand for the sigma receptor.
    Brain research, 1991, Apr-19, Volume: 546, Issue:2

    JO 1784 ((+)-N-Cyclopropyl-methyl-N-methyl-1,4-diphenyl-1-yl-but-3-en-1-ylami ne, hydrochloride), has been recently described as a selective ligand for the sigma receptor with an IC50 of 39 +/- 8 nM28. In the present study the effects of JO 1784 on experimental induced amnesia were investigated using one trial passive avoidance task in rats. Amnesia was produced by injecting scopolamine (1 mg/kg i.p.) 30 min before the second session (T2) on day 2 of the passive avoidance task. The anti-amnesic effect of JO 1784 was compared with other typical and atypical psychotropic drugs which interact at the sigma and or the phencyclidine site. JO 1784 was studied at 5 doses; 0.0625, 0.25, 1.0, 4.0 and 16.0 mg/kg i.p. ((+)-3-(3-hydroxyphenyl)-N-1-(propyl)piperidine ((+)-3-PPP). Rimcazole, (+)-N-allylnormetazocine ((+)-NANM), 1,3-di(2-tolyl) guanidine (DTG) were studied at 4 doses; 0.25, 1.0, 4.0 and 8.0 mg/kg i.p. All drugs were administered 60 min before the test (T2) on day 2 i.e. 30 min before scopolamine. Piracetam (1000 mg/kg p.o.) administered in the same test conditions was used as a reference compound in each experiment. Of the drugs investigated JO 1784 (0.25, 1.0, 4.0 and 16.0 mg/kg i.p.), (+)-3-PPP (0.25, 1.0 and 4.0 mg/kg i.p.), DTG (1.0, 4.0 and 8.0 mg/kg) and piracetam significantly reversed scopolamine induced amnesia on day 3 (T3). At the lower dose, JO 1784 (0.0625 mg/kg) failed to reverse the amnesic effects of scopolamine on day 3. These results suggest that JO 1784 the selective sigma ligand, may be beneficial in amnesic status.

    Topics: Amnesia; Animals; Antipsychotic Agents; Avoidance Learning; Behavior, Animal; Carbazoles; Cinnamates; Cyclopropanes; Dopamine Agents; Dose-Response Relationship, Drug; Guanidines; Ligands; Male; Phenazocine; Piperidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma; Scopolamine

1991