piperidines and iberiotoxin

piperidines has been researched along with iberiotoxin* in 14 studies

Other Studies

14 other study(ies) available for piperidines and iberiotoxin

ArticleYear
Cytochrome P-450 metabolites of 2-arachidonoylglycerol play a role in Ca2+-induced relaxation of rat mesenteric arteries.
    American journal of physiology. Heart and circulatory physiology, 2008, Volume: 294, Issue:5

    The perivascular sensory nerve (PvN) Ca(2+)-sensing receptor (CaR) is implicated in Ca(2+)-induced relaxation of isolated, phenylephrine (PE)-contracted mesenteric arteries, which involves the vascular endogenous cannabinoid system. We determined the effect of inhibition of diacylglycerol (DAG) lipase (DAGL), phospholipase A(2) (PLA(2)), and cytochrome P-450 (CYP) on Ca(2+)-induced relaxation of PE-contracted rat mesenteric arteries. Our findings indicate that Ca(2+)-induced vasorelaxation is not dependent on the endothelium. The DAGL inhibitor RHC 802675 (1 microM) and the CYP and PLA(2) inhibitors quinacrine (5 microM) (EC(50): RHC 802675 2.8 +/- 0.4 mM vs. control 1.4 +/- 0.3 mM; quinacrine 4.8 +/- 0.4 mM vs. control 2.0 +/- 0.3 mM; n = 5) and arachidonyltrifluoromethyl ketone (AACOCF(3), 1 microM) reduced Ca(2+)-induced relaxation of mesenteric arteries. Synthetic 2-arachidonoylglycerol (2-AG) and glycerated epoxyeicosatrienoic acids (GEETs) induced concentration-dependent relaxation of isolated arteries. 2-AG relaxations were blocked by iberiotoxin (IBTX) (EC(50): control 0.96 +/- 0.14 nM, IBTX 1.3 +/- 0.5 microM) and miconazole (48 +/- 3%), and 11,12-GEET responses were blocked by IBTX (EC(50): control 55 +/- 9 nM, IBTX 690 +/- 96 nM) and SR-141716A. The data suggest that activation of the CaR in the PvN network by Ca(2+) leads to synthesis and/or release of metabolites of the CYP epoxygenase pathway and metabolism of DAG to 2-AG and subsequently to GEETs. The findings indicate a role for 2-AG and its metabolites in Ca(2+)-induced relaxation of resistance arteries; therefore this receptor may be a potential target for the development of new vasodilator compounds for antihypertensive therapy.

    Topics: 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Arachidonic Acids; Calcium; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Glycerides; Lipoprotein Lipase; Male; Mesenteric Arteries; Miconazole; Peptides; Phenylephrine; Phospholipase A2 Inhibitors; Phospholipases A2; Piperidines; Potassium Channel Blockers; Potassium Channels, Calcium-Activated; Pyrazoles; Quinacrine; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptors, Calcium-Sensing; Rimonabant; Signal Transduction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents

2008
Role of Ca2+-dependent potassium channels in in vitro anandamide-mediated mesenteric vasorelaxation in rats with biliary cirrhosis.
    Liver international : official journal of the International Association for the Study of the Liver, 2007, Volume: 27, Issue:8

    Anandamide can activate potassium (K(+)) channels to induce an endothelium-dependent vasorelaxation in normal rat mesenteric arteries. Cannabinoids contribute partly to the splanchnic vasodilation in cirrhosis. This study investigated the roles of vascular K(+) channels in anandamide-induced mesenteric vasorelaxation in isolated rat cirrhotic vessels.. The effects of the pretreatment of AM251, a specific CB(1) receptor antagonist, were assessed on the vascular reactivity to phenylephrine (PE), potassium chloride (KCl), acetylcholine (ACh) and sodium nitroprusside (SNP). Additionally, cannabinoid (CB(1) and CB(2)) receptors' protein expression and the effects of different K(+) channel blockers on vascular reactivity to anandamide were also studied.. Cirrhotic mesenteric arteries showed an overexpression of CB(1) receptor associated with hyporeactivity to PE and KCl, and hyper-response to ACh, SNP and anandamide. Pretreatment with AM251 significantly improved the hyporeactivity to KCl and ameliorated the hyper-response to ACh in cirrhotic vessels. Increased relaxation response to anandamide was suppressed by combinations of vascular Ca(2+)-dependent K(+) channel blockers (including apamin+charybdotoxin+iberiotoxin or apamin+TRAM-34+iberiotoxin) (TRAM-34, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole).. In cirrhotic mesenteric arteries, vascular CB(1) receptor and anandamide contribute to the in vitro hyporeactivity to KCl. In addition, hyper-response to ACh may probably act through the modulation of vascular Ca(2+)-dependent K(+) channels.

    Topics: Acetylcholine; Animals; Apamin; Arachidonic Acids; Cannabinoid Receptor Modulators; Charybdotoxin; Common Bile Duct; Dose-Response Relationship, Drug; Endocannabinoids; Glyburide; Ligation; Liver Cirrhosis, Biliary; Liver Cirrhosis, Experimental; Male; Mesenteric Artery, Superior; Nitroprusside; Peptides; Phenylephrine; Piperidines; Polyunsaturated Alkamides; Potassium; Potassium Channel Blockers; Potassium Channels, Calcium-Activated; Potassium Chloride; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents

2007
Muscarinic regulation of neonatal rat bladder spontaneous contractions.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2006, Volume: 291, Issue:4

    In vitro preparations of whole urinary bladders of neonatal rats exhibit prominent myogenic spontaneous contractions, the amplitude and frequency of which can be increased by muscarinic agonists. The muscarinic receptor subtype responsible for this facilitation was examined in the present experiments. Basal spontaneous contractions in bladders from 1- to 2-wk-old Sprague-Dawley rats were not affected by M2 or M3 receptor antagonists. However, administration of 0.5 microM physostigmine, an anticholinesterase agent that increases the levels of endogenous acetylcholine, or 50-100 nM carbachol, a cholinergic agonist at low concentrations, which did not cause tonic contractions, significantly augmented the frequency and amplitude of spontaneous contractions. Blockade of M2 receptors with 0.1 microM AF-DX 116 or 1 microM methoctramine or blockade of M3 receptors with 50 nM 4-diphenylacetoxy-N-methylpiperidine methiodide or 0.1 microM 4-diphenylacetoxy-N-(2-chloroethyl)piperidine hydrochloride (4-DAMP mustard) reversed the physostigmine and carbachol responses. M2 and M3 receptor blockade did not alter the facilitation of spontaneous contractions induced by 10 nM BAY K 8644, an L-type Ca2+ channel opener, or 0.1 microM iberiotoxin, a large-conductance Ca2+-activated K+ channel blocker. NS-1619 (30 microM), a large-conductance Ca2+-activated K+ channel opener, decreased carbachol-augmented spontaneous contractions. These results suggest that spontaneous contractions in the neonatal rat bladder are enhanced by activation of M2 and M3 receptors by endogenous acetylcholine released in the presence of an anticholinesterase agent or a cholinergic receptor agonist.

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Animals, Newborn; Calcium Channel Agonists; Carbachol; Cholinergic Agonists; Cholinesterase Inhibitors; Diamines; Electric Stimulation; Muscle Contraction; Muscle Hypertonia; Muscle, Smooth; Parasympatholytics; Peptides; Physostigmine; Piperidines; Pirenzepine; Rats; Rats, Sprague-Dawley; Receptor, Muscarinic M2; Receptor, Muscarinic M3; Urinary Bladder

2006
Endothelin-1-induced proliferation of human endothelial cells depends on activation of K+ channels and Ca+ influx.
    Acta physiologica Scandinavica, 2005, Volume: 183, Issue:2

    Endothelin-1 (ET-1) promotes endothelial cell growth. Endothelial cell proliferation involves the activation of Ca2+-activated K+ channels. In this study, we investigated whether Ca2+-activated K+ channels with big conductance (BK(Ca)) contribute to endothelial cell proliferation induced by ET-1.. The patch-clamp technique was used to analyse BK(Ca) activity in endothelial cells derived from human umbilical cord veins (HUVEC). Endothelial proliferation was examined using cell counts and measuring [3H]-thymidine incorporation. Changes of intracellular Ca2+ levels were examined using fura-2 fluorescence imaging.. Characteristic BK(Ca) were identified in cultured HUVEC. Continuous perfusion of HUVEC with 10 nmol L(-1) ET-1 caused a significant increase of BK(Ca) open-state probability (n = 14; P < 0.05; cell-attached patches). The ET(B)-receptor antagonist (BQ-788, 1 micromol L(-1)) blocked this effect. Stimulation with Et-1 (10 nmol L(-1)) significantly increased cell growth by 69% (n = 12; P < 0.05). In contrast, the combination of ET-1 (10 nmol L(-1)) and the highly specific BK(Ca) blocker iberiotoxin (IBX; 100 nmol L(-1)) did not cause a significant increase in endothelial cell growth. Ca2+ dependency of ET-1-induced proliferation was tested using the intracellular Ca2+-chelator BAPTA (10 micromol L(-1)). BAPTA abolished ET-1 induced proliferation (n = 12; P < 0.01). In addition, ET-1-induced HUVEC growth was significantly reduced, if cells were kept in a Ca2+-reduced solution (0.3 mmol L(-1)), or by the application of 2 aminoethoxdiphenyl borate (100 micromol L(-1)) which blocks hyperpolarization-induced Ca2+ entry (n = 12; P < 0.05).. Activation of BK(Ca) by ET-1 requires ET(B)-receptor activation and induces a capacitative Ca2+ influx which plays an important role in ET-1-mediated endothelial cell proliferation.

    Topics: Calcium; Cell Count; Cell Division; Cells, Cultured; Chelating Agents; Culture Media; Dose-Response Relationship, Drug; Egtazic Acid; Electric Conductivity; Endothelial Cells; Endothelin B Receptor Antagonists; Endothelin-1; Humans; Membrane Potentials; Oligopeptides; Peptides; Piperidines; Potassium Channels, Calcium-Activated

2005
Stimulation of cannabinoid (CB1) and prostanoid (EP2) receptors opens BKCa channels and relaxes ocular trabecular meshwork.
    Experimental eye research, 2005, Volume: 80, Issue:5

    Prostanoids and cannabinoids have ocular hypotensive and neuroprotective properties. The effect of the prostanoid AH13205 (EP2), the thromboxane-mimetic U46619, the cannabinoid (CB) agonists WIN55212-2 and CP 55,940, endothelin-1 (ET-1) and 8-bromo-cAMP on the membrane currents of trabecular meshwork (TM) cells were measured using the patch-clamp technique and compared to their effects on TM contractility. Previous studies show relaxation of TM to AH 13205 and other substances that elevate cAMP, while U46619 and endothelin-1 contract TM. This study shows that after contraction (100%) with carbachol (10(-6)m), the CB agonist CP 55,940 dose-dependently reduced contractility to 83+/-4% (n=9) (10(-6)m) and 61+/-10%, (n=7) (10(-5)m). In the presence of both the CB1 antagonist AM251 (10(-6)m) and CP 55,940 (10(-5)m), the contractile response to carbachol reached 84+/-3% (n=6) of the original level. In patch-clamp experiments, membrane permeable 8-bromo-cAMP (10(-4)m) had no effect on currents of TM cells. In contrast, AH 13205 and two cannabinoids reversibly enhanced outward current through high-conductance Ca(2+)-activated K(+) channels (BKCa, BK, maxi-K) to the following values (in % of the initial value at 100 mV): AH 13205 (10(-5)m): 200+/-28% (n=6), CP 55,940 (10(-6)m): 196+/-33% (n=7), CP 55,940 (10(-5)m): 484+/-113% (n=7), WIN55212-2 (10(-5)m): 205+/-41% (n=10). Iberiotoxin (10(-7)m) completely blocked these responses. The current response to CP 55,940 (10(-5)m) could be partially blocked by the CB1 antagonist AM251 (10(-6)m). Conversely, the contractile agents in this study either caused a transient reduction in outward current (ET-1(5x10(-8)m)) or had no effect (U46619 (10(-6)m)). We conclude that stimulation of EP2 and CB1 receptors in TM is coupled to the activation of BKCa channels via a non-diffusible second messenger cascade. This effect may contribute to the relaxant activity of EP2 and CB1 agonists in isolated TM strips, modulating ocular outflow.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8-Bromo Cyclic Adenosine Monophosphate; Adult; Aged; Animals; Benzoxazines; Calcium; Calcium Channel Blockers; Cannabinoids; Carbachol; Cattle; Cells, Cultured; Cholinergic Agonists; Cyclic AMP; Cyclohexanols; Endothelin-1; Humans; In Vitro Techniques; Ion Channel Gating; Middle Aged; Morpholines; Naphthalenes; Patch-Clamp Techniques; Peptides; Piperidines; Potassium Channels, Calcium-Activated; Prostanoic Acids; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, Prostaglandin E; Stimulation, Chemical; Trabecular Meshwork

2005
Novel form of LTD induced by transient, partial inhibition of the Na,K-pump in rat hippocampal CA1 cells.
    Journal of neurophysiology, 2004, Volume: 91, Issue:1

    We tested the hypothesis that transient, partial inhibition of the Na,K-pumps could produce lasting effects on synaptic efficacy in brain tissue by applying a low concentration of the ouabain analogue, dihydroouabain (DHO), to hippocampal slices for 15 min and studying the effects on field excitatory postsynaptic potentials (fEPSPs). DHO caused a suppression of fEPSPs during the application period, but this recovered only partially, to approximately 80% of control levels, after washout lasting as long as 2 h. The lasting suppression had several properties in common with low-frequency stimulation induced long-term depression (LFS-LTD), including an ability to depotentiate long-term potentiated responses. However, DHO-LTD was insensitive to blockade of N-methyl-d-aspartate or mGlu receptors or to inhibitors of protein kinase C or p38 MAP kinase. DHO-LTD did not co-occlude with LFS-LTD and therefore appears to represent a novel form of LTD. Interestingly, DHO-LTD could be prevented by pretreating slices with iberiotoxin, the selective blocker of large, Ca(2+)-dependent K+ channels ("big K," BK channels), although this toxin did not affect basal fEPSPs. Certain pathological conditions, including hypoxia and ischemia, are associated with a decrease in Na,K-pump activity and hence DHO-LTD may serve as a model for the effects on neuronal function in these conditions.

    Topics: Animals; Drug Interactions; Electric Stimulation; Electrophysiology; Enzyme Inhibitors; Evoked Potentials; Hippocampus; Imidazoles; In Vitro Techniques; Indoles; Long-Term Synaptic Depression; Male; Maleimides; Neural Inhibition; Neurons; Ouabain; Peptides; Piperidines; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Sodium-Potassium-Exchanging ATPase; Time Factors

2004
[The mechanisms of short-term forms of synaptic plasticity].
    Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova, 2004, Volume: 90, Issue:8

    In experiments on the frog cutaneous pectoris muscle in cases of different external calcium concentrations, using extracellular recording technique, processes of facilitation and depression of transmitter release during the high-frequency stimulation were investigated. On the ground of experiments using intracellular mobile calcium buffers BAPTA-AM and EGTA-AM, it was proposed that at least two (low- and high-affinity) calcium-binding sites underlie the facilitation. Both the facilitation and the depression were accompanied by such transformations of underlied of nerve ending responses as changes of the third phase amplitude. Application of potassium channel blockers allowed us to reveal the significant contribution of changes of duration of the AP repolarisation phase and, accordingly, the changes of magnitude of calcium influx to development of facilitation and depression of transmitter release. It was also revealed that, during the high-frequency rhythmic stimulation, the increase of asynchrony of transmitter release leading to decrease of facilitation and increase of depression occurred. It was concluded that the forms of short-term synaptic plasticity--facilitation and depression, were caused by various presynaptic mechanisms: the increase of concentration of "local" and accumulation of "residual" calcium, the changes of calcium influx, increase of temporal course of secretion, the impairment of equilibrium between the depletion and restoration of mediator supply. Due to some of these processes and specific conditions of synapse functioning, the facilitation of the depression of transmitter release occurred.

    Topics: Action Potentials; Animals; Calcium; Egtazic Acid; Electric Stimulation; In Vitro Techniques; Neuromuscular Junction; Neuronal Plasticity; Peptides; Piperidines; Potassium Channel Blockers; Presynaptic Terminals; Rana ridibunda; Synaptic Transmission

2004
Inhibition of Na(+)/K(+)-atpase by endothelin-1 in human nonpigmented ciliary epithelial cells.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 296, Issue:3

    Endothelin-1 (ET-1), a potent vasoconstrictor, lowers intraocular pressure in mammals, either by enhancing the outflow of aqueous humor (AH) via the trabecular meshwork and Schlemm's canal or by reducing AH formation at the ciliary epithelium. Aqueous humor production occurs by passive diffusion of water coupled with active transport of ions, mainly involving Na(+):K(+):2Cl(-) cotransporter and Na(+)/K(+)-ATPase pump from serosal to aqueous side. Presently, we have evaluated the effects of ET-1 on Na(+):K(+):2Cl(-) cotransport and Na(+)/K(+)-ATPase activity in HNPE cells using (86)Rb(+) uptake. ET-1 (100 pM-100 nM) decreased mean (86)Rb(+) uptake by 15% during a 15-min uptake period. ET-1's effect was not prevented by BQ610, an ET(A) receptor antagonist, but was blocked by BQ788, an ET(B) receptor antagonist. ET-1's effect was mimicked by sarafotoxin, an ET(B) agonist. ET-1-induced reduction in (86)Rb(+) uptake was additive with bumetanide, a selective inhibitor of Na(+):K(+):2Cl(-) cotransporter but not with ouabain, a selective inhibitor of the Na(+)/K(+)-ATPase. ET-1 did not affect iberiotoxin-sensitive maxi K(+) channels. This suggests that ET-1-induced reduction in (86)Rb(+) uptake is mediated through the inhibition of the Na(+)/K(+)-ATPase via an ET(B)-like receptor. These findings are consistent with an ET-1 effect on active ion transport activity in HNPE cells that could explain the reduction in aqueous humor production and the lowering of intraocular pressure.

    Topics: Antihypertensive Agents; Biological Transport; Bumetanide; Carrier Proteins; Cells, Cultured; Ciliary Body; Diuretics; Endothelin Receptor Antagonists; Endothelin-1; Enzyme Inhibitors; Humans; Intermediate-Conductance Calcium-Activated Potassium Channels; Oligopeptides; Ouabain; Peptides; Pigment Epithelium of Eye; Piperidines; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Calcium-Activated; Receptor, Endothelin A; Receptor, Endothelin B; Rubidium; Sodium-Potassium-Chloride Symporters; Sodium-Potassium-Exchanging ATPase; Time Factors

2001
Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries.
    British journal of pharmacology, 2001, Volume: 134, Issue:4

    1. The cannabinoid arachidonyl ethanolamide (anandamide) caused concentration-dependent relaxation of 5-HT-precontracted, myograph-mounted, segments of rat left anterior descending coronary artery. 2. This relaxation was endothelium-independent, unaffected by the fatty acid amide hydrolase inhibitor, arachidonyl trifluoromethyl ketone (10 microM), and mimicked by the non-hydrolysable anandamide derivative, methanandamide. 3. Relaxations to anandamide were attenuated by the cannabinoid receptor antagonist, SR 141716A (3 microM), but unaffected by AM 251 (1 microM) and AM 630 (1 microM), more selective antagonists of cannabinoid CB(1) and CB(2) receptors respectively. Palmitoylethanolamide, a selective CB(2) receptor agonist, did not relax precontracted coronary arteries. 4. Anandamide relaxations were not affected by inhibition of sensory nerve transmission with capsaicin (10 microM) or blockade of vanilloid VR1 receptors with capsazepine (5 microM). Nevertheless capsaicin relaxed coronary arteries in a concentration-dependent and capsazepine-sensitive manner, confirming functional sensory nerves were present. In contrast, capsazepine and capsaicin did inhibit anandamide relaxations in methoxamine-precontracted rat small mesenteric arteries. 5. Relaxations to anandamide were inhibited by TEA (1 mM) or iberiotoxin (50 nM), blockers of large conductance, Ca(2+)-activated K(+) channels (BK(Ca)). Gap junction inhibition with 18alpha-glycyrrhetinic acid (100 microM) did not affect anandamide relaxations. 6. This study shows anandamide relaxes the rat coronary artery by a novel mechanism. Anandamide-induced relaxations do not involve the endothelium, degradation into active metabolites, or activation of cannabinoid CB(1) or CB(2) receptors, but may involve activation of BK(Ca). Vanilloid receptor activation also has no role in the effects of anandamide in coronary arteries, even though functional sensory nerves are present.

    Topics: Amides; Animals; Arachidonic Acids; Capsaicin; Coronary Vessels; Dose-Response Relationship, Drug; Endocannabinoids; Endothelium, Vascular; Ethanolamines; Gap Junctions; Glycyrrhetinic Acid; In Vitro Techniques; Indoles; Indomethacin; Male; Palmitic Acids; Peptides; Piperidines; Polyunsaturated Alkamides; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Serotonin; Tetraethylammonium; Vasodilation

2001
Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels.
    British journal of pharmacology, 2001, Volume: 134, Issue:5

    1. The effects of the endocannabinoid, anandamide, and its metabolically stable analogue, methanandamide, on induced tone were examined in sheep coronary artery rings in vitro. 2. In endothelium-intact rings precontracted to the thromboxane A(2) mimetic, U46619, anandamide (0.01 - 30 microM) induced slowly developing concentration-dependent relaxations (pEC(50) [negative log of EC(50)]=6.1+/-0.1; R(max) [maximum response]=81+/-4%). Endothelium denudation caused a 10 fold rightward shift of the anandamide concentration-relaxation curve without modifying R(max). Methanandamide was without effect on U46619-induced tone. 3. The anandamide-induced relaxation was unaffected by the cannabinoid receptor antagonist, SR 141716A (3 microM), the vanilloid receptor antagonist, capsazepine (3 and 10 microM) or the nitric oxide synthase inhibitor, L-NAME (100 microM). 4. The cyclo-oxygenase inhibitor, indomethacin (3 and 10 microM) and the anandamide amidohydrolase inhibitor, PMSF (70 and 200 microM), markedly attenuated the anandamide response. The anandamide transport inhibitor, AM 404 (10 and 30 microM), shifted the anandamide concentration-response curve to the right. 5. Precontraction of endothelium-intact rings with 25 mM KCl attenuated the anandamide-induced relaxations (R(max)=7+/-7%), as did K(+) channel blockade with tetraethylammonium (TEA; 3 microM) or iberiotoxin (100 nM). Blockade of small conductance, Ca(2+)-activated K(+) channels, delayed rectifier K(+) channels, K(ATP) channels or inward rectifier K(+) channels was without effect. 6. These data suggest that the relaxant effects of anandamide in sheep coronary arteries are mediated in part via the endothelium and result from the cellular uptake and conversion of anandamide to a vasodilatory prostanoid. This, in turn, causes vasorelaxation, in part, by opening potassium channels.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 4-Aminopyridine; Animals; Apamin; Arachidonic Acid; Arachidonic Acids; Barium; Calcium Channel Blockers; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Coronary Vessels; Cytochrome P-450 Enzyme Inhibitors; Dose-Response Relationship, Drug; Endocannabinoids; Endothelium, Vascular; Enzyme Inhibitors; Fatty Acids, Unsaturated; Glyburide; In Vitro Techniques; Indomethacin; Miconazole; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Peptides; Phenylmethylsulfonyl Fluoride; Piperidines; Polyunsaturated Alkamides; Potassium; Potassium Channel Blockers; Potassium Channels; Pyrazoles; Receptors, Drug; Rimonabant; Sheep; Tetraethylammonium; Vasoconstrictor Agents; Vasodilation

2001
Effects of different types of K+ channel modulators on the spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle.
    Acta physiologica Scandinavica, 2001, Volume: 173, Issue:3

    In the present study, effects of different types of K+ channel modulators on the spontaneous rhythmic contractile activity were examined in guinea-pig urinary bladder smooth muscle (UBSM). Guinea-pig UBSM exhibited myogenic rhythmic contraction in the presence of atropine (1 microM), phentolamine (1 microM), propranolol (1 microM), suramin (10 microM) and tetrodotoxin (1 microM). Nisoldipine (100 nM) or diltiazem (10 microM) substantially diminished UBSM contractile activity. Nisoldipine-resistant component of UBSM rhythmic contraction was further inhibited by gadolinium (200 microM). Iberiotoxin (50 nM), a selective blocker of large-conductance, voltage-gated Ca2+-activated K+ (K(Ca)) (BK) channel, dramatically increased both contraction amplitude and frequency whereas NS-1619 (30 microM), which increases BK channel activity, decreased them. Apamin (100 nM), a selective blocker of small-conductance, K(Ca) (SK) channel, increased contraction amplitude but decreased frequency. A blocker of voltage-gated K+ (Kv) channel, 4-aminopyridine (100 microM), significantly increased contraction frequency. E-4031, a blocker of a novel inwardly rectifying K+ channel, i.e. the human ether-a-go-go-related gene (HERG) K+ channel, significantly increased contraction amplitude. Glibenclamide (1-10 microM) (K(ATP) channel blocker) and Ba2+ (10 microM) (conventional K(ir) channel blocker) did not exhibit conspicuous effects on spontaneous contractile activity of UBSM. These findings imply that two types of K(Ca) (BK and SK) channels have prominent roles as negative feedback elements to limit extracellular Ca2+ influx-mediated guinea-pig UBSM contraction by regulating both amplitude and frequency. It was also suggested that both non-K(Ca) type of K+ (Kv and HERG-like K+) channels may contribute to the regulation of UBSM myogenic rhythmic contraction.

    Topics: 4-Aminopyridine; Animals; Anti-Arrhythmia Agents; Apamin; Barium; Benzimidazoles; Calcium Channel Blockers; Cation Transport Proteins; Cromakalim; Diltiazem; Ether-A-Go-Go Potassium Channels; Female; Glyburide; Guinea Pigs; Large-Conductance Calcium-Activated Potassium Channels; Male; Muscle Contraction; Muscle, Smooth; Nisoldipine; Parasympatholytics; Peptides; Periodicity; Piperidines; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Calcium-Activated; Potassium Channels, Voltage-Gated; Pyridines; Small-Conductance Calcium-Activated Potassium Channels; Urinary Bladder

2001
NO-mediated MaxiK(Ca) channel activation produces relaxation of guinea pig aorta independently of voltage-dependent L-type Ca(2+) channels.
    General pharmacology, 2000, Volume: 34, Issue:3

    The role of L-type Ca(2+) channels in the relaxation to nitric oxide (NO)-mediated MaxiK(Ca) channel activation was examined in guinea pig aorta. Acetylcholine (ACh) produced an endothelium-dependent relaxation of guinea pig aorta precontracted with noradrenaline (NA), which was abolished by an NO synthase inhibitor, N(G)-nitro-L-arginine (L-NNA). Both endothelium-dependent relaxation by ACh and endothelium-independent relaxation by an NO donor, (+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamide (NOR3), were strongly suppressed by a soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ), suggesting that increased intracellular cGMP plays the key role in both responses. ACh- and NOR3-induced relaxations were significantly suppressed by iberiotoxin (IbTX), a selective blocker of MaxiK(Ca) channels. ACh- and NOR3-induced relaxations were greatly attenuated when arteries were precontracted with high KCl instead of NA, supporting the idea that K(+) channel activation mediates the relaxant responses. (6) NOR3-induced relaxations were not affected by a L-type Ca(2+) channel blocker, diltiazem. Furthermore, endothelium-independent relaxation by a K(ATP) channel opener, (+)-7,8-dihydro-6, 6-dimethyl-7-hydroxy-8-(2-oxo-1-piperidinyl)-6H-pyrano[2,3-f] benz-2,1, 3-oxadiazole (NIP-121) was not affected by diltiazem and nicardipine. These findings suggest that blockade of L-type Ca(2+) channels is not a major mechanism responsible for the vascular relaxation due to NO-mediated MaxiK(Ca) channel activation in guinea pig aorta.

    Topics: Acetylcholine; Animals; Aorta, Thoracic; Calcium Channel Blockers; Calcium Channels, L-Type; Drug Interactions; Female; Guinea Pigs; In Vitro Techniques; Large-Conductance Calcium-Activated Potassium Channels; Male; Nitric Oxide; Nitric Oxide Donors; Nitro Compounds; Nitroarginine; Norepinephrine; Oxadiazoles; Peptides; Piperidines; Potassium Channels; Potassium Channels, Calcium-Activated; Potassium Chloride; Quinoxalines; Vasodilation

2000
Neuroregulation by vasoactive intestinal peptide (VIP) of mucus secretion in ferret trachea: activation of BK(Ca) channels and inhibition of neurotransmitter release.
    British journal of pharmacology, 1999, Volume: 126, Issue:1

    1. The aims of this study were to determine: (1) whether vasoactive intestinal peptide (VIP) regulates cholinergic and 'sensory-efferent' (tachykininergic) 35SO4 labelled mucus output in ferret trachea in vitro, using a VIP antibody, (2) the class of potassium (K+) channel involved in VIP-regulation of cholinergic neural secretion using glibenclamide (an ATP-sensitive K+ (K(ATP)) channel inhibitor), iberiotoxin (a large conductance calcium activated K+ (BK(ca)) channel blocker), and apamin (a small conductance K(ca) (SK(ca)) channel blocker), and (3) the effect of VIP on cholinergic neurotransmission using [3H]-choline overflow as a marker for acetylcholine (ACh) release. 2. Exogenous VIP (1 and 10 microM) alone increased 35SO4 output by up to 53% above baseline, but suppressed (by up to 80% at 1 microM) cholinergic and tachykininergic neural secretion without altering secretion induced by ACh or substance P (1 microM each). Endogenous VIP accounted for the minor increase in non-adrenergic, non-cholinergic (NANC), non-tachykininergic neural secretion, which was compatible with the secretory response of exogenous VIP. 3. Iberiotoxin (3 microM), but not apamin (1 microM) or glibenclamide (0.1 microM), reversed the inhibition by VIP (10 nM) of cholinergic neural secretion. 4. Both endogenous VIP (by use of the VIP antibody; 1:500 dilution) and exogenous VIP (0.1 microM), the latter by 34%, inhibited ACh release from cholinergic nerve terminals and this suppression was completely reversed by iberiotoxin (0.1 microM). 5. We conclude that, in ferret trachea in vitro, endogenous VIP has dual activity whereby its small direct stimulatory action on mucus secretion is secondary to its marked regulation of cholinergic and tachykininergic neurogenic mucus secretion. Regulation is via inhibition of neurotransmitter release, consequent upon opening of BK(Ca) channels. In the context of neurogenic mucus secretion, we propose that VIP joins NO as a neurotransmitter of i-NANC nerves in ferret trachea.

    Topics: Acetylcholine; Adrenergic Agents; Animals; Antibodies; Atropine; Chymotrypsin; Dose-Response Relationship, Drug; Ferrets; In Vitro Techniques; Male; Mucus; Muscarinic Antagonists; Neurotransmitter Agents; Peptides; Phentolamine; Piperidines; Potassium Channels; Propranolol; Receptors, Adrenergic; Receptors, Cholinergic; Receptors, Tachykinin; Trachea; Tritium; Vasoactive Intestinal Peptide

1999
A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    British journal of pharmacology, 1997, Volume: 122, Issue:8

    1. Relaxation of the methoxamine-precontracted rat small mesenteric artery by endothelium-derived hyperpolarizing factor (EDHF) was compared with relaxation to the cannabinoid, anandamide (arachidonylethanolamide). EDHF was produced in a concentration- and endothelium-dependent fashion in the presence of NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) by either carbachol (pEC50 [negative logarithm of the EC50] = 6.19 +/- 0.01, Rmax [maximum response] = 93.2 +/- 0.4%; n = 14) or calcium ionophore A23187 (pEC50 = 6.46 +/- 0.02, Rmax = 83.6 +/- 3.6%; n = 8). Anandamide responses were independent of the presence of endothelium or L-NAME (control with endothelium: pEC50 = 6.31 +/- 0.06, Rmax = 94.7 +/- 4.6%; n = 10; with L-NAME: pEC50 = 6.33 +/- 0.04, Rmax = 93.4 +/- 6.0%; n = 4). 2. The selective cannabinoid receptor antagonist, SR 141716A (1 microM) caused rightward shifts of the concentration-response curves to both carbachol (2.5 fold) and A23187 (3.3 fold). It also antagonized anandamide relaxations in the presence or absence of endothelium giving a 2 fold shift in each case. SR 141716A (10 microM) greatly reduced the Rmax values for EDHF-mediated relaxations to carbachol (control, 93.2 +/- 0.4%; SR 141716A, 10.7 +/- 2.5%; n = 5; P < 0.001) and A23187 (control, 84.8 +/- 2.1%; SR 141716A, 3.5 +/- 2.3%; n = 6; P < 0.001) but caused a 10 fold parallel shift in the concentration-relaxation curve for anandamide without affecting Rmax. 3. Precontraction with 60 mM KCl significantly reduced (P < 0.01; n = 4 for all) relaxations to 1 microM carbachol (control 68.8 +/- 5.6% versus 17.8 +/- 7.1%), A23187 (control 71.4 +/- 6.1% versus 3.9 +/- 0.45%) and anandamide (control 71.1 +/- 7.0% versus 5.2 +/- 3.6%). Similar effects were seen in the presence of 25 mM K+. Incubation of vessels with pertussis toxin (PTX; 400 ng ml-1, 2 h) also reduced (P < 0.01; n = 4 for all) relaxations to 1 microM carbachol (control 63.5 +/- 7.5% versus 9.0 +/- 3.2%), A23187 (control 77.0 +/- 5.8% versus 16.2 +/- 7.1%) and anandamide (control 89.8 +/- 2.2% versus 17.6 +/- 8.7%). 4. Incubation of vessels with the protease inhibitor phenylmethylsulphonyl fluoride (PMSF; 200 microM) significantly potentiated (P < 0.01), to a similar extent (approximately 2 fold), relaxation to A23187 (pEC50: control, 6.45 +/- 0.04; PMSF, 6.74 +/- 0.10; n = 4) and anandamide (pEC50: control, 6.31 +/- 0.02; PMSF, 6.61 +/- 0.08; n = 8). PMSF also potentiated carbachol responses both in the presence (pEC50:

    Topics: 4-Aminopyridine; Animals; Apamin; Arachidonic Acids; Barium; Biological Factors; Calcium Channel Blockers; Charybdotoxin; Endocannabinoids; Enzyme Inhibitors; Glyburide; Hypoglycemic Agents; Indoles; Male; Mesenteric Arteries; NG-Nitroarginine Methyl Ester; Peptides; Pertussis Toxin; Piperidines; Polyunsaturated Alkamides; Potassium; Potassium Channel Blockers; Protease Inhibitors; Pyrazoles; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Tosyl Compounds; Vasodilation; Virulence Factors, Bordetella

1997