piperidines has been researched along with fumaric-acid* in 3 studies
3 other study(ies) available for piperidines and fumaric-acid
Article | Year |
---|---|
Anti-trypanosomal activities and structural chemical properties of selected compound classes.
Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families. Topics: Animals; Cell Line; Cysteine Proteases; Fumarates; Hydrogen-Ion Concentration; Macrophages; Mice; Mitochondria; Organelles; Piperazine; Piperazines; Piperidines; Trypanocidal Agents; Trypanosoma brucei brucei | 2015 |
Development of a multi particulate extended release formulation for ZK 811 752, a weakly basic drug.
ZK 811 752, a potent candidate for the treatment of autoimmune diseases, demonstrated pH-dependent solubility. The resulting release from conventional mini matrix tablets decreased with increasing pH-values of the dissolution medium. The aim of this study was to overcome this problem and to achieve pH-independent drug release. Mini matrix tablets were prepared by direct compression of drug, matrix former (polyvinylacetate/polyvinylpyrrolidone; Kollidon SR) and excipients (lactose, calcium phosphate or maize starch). To solve the problem of pH-dependent solubility fumaric acid was added to the drug-polymer excipient system. The addition of fumaric acid was found to maintain low pH-values within the mini tablets during release of ZK 811 752 in phosphate buffer pH 6.8. Thus, micro environmental conditions for the dissolution of the weakly basic drug were kept constant and drug release was demonstrated to be pH-independent. Incorporation of water-soluble (lactose) or highly swellable (maize starch) excipients accelerated drug release in a more pronounced manner compared to the water-insoluble excipient calcium phosphate. Stability studies demonstrated no degradation of the drug substance and reproducible drug release patterns for mini matrix tablets stored at 25 degrees C/60% RH and 30 degrees C/70% RH for up to 6 months. Topics: Calcium Phosphates; Chemistry, Pharmaceutical; Delayed-Action Preparations; Drug Stability; Fumarates; Hydrogen-Ion Concentration; Lactose; Phenylurea Compounds; Piperidines; Polyvinyls; Povidone; Receptors, CCR1; Receptors, Chemokine; Solubility; Starch; Tablets | 2005 |
Conformational analysis and crystal structure of {[1-(3-chloro-4-fluorobenzoyl)-4-fluoropiperidin-4yl]methyl}[(5-methylpyridin-2-yl)methyl]amine, fumaric acid salt.
{[1-(3-Chloro-4-fluorobenzoyl)-4-fluoropiperidin-4yl]methyl}[(5-methylpyridin-2-yl)methyl]amine, fumaric acid salt (C(20)H(22)ClF(2)N(3)O, C(4)H(4)O(4)) (1) was synthesized and characterized by the complete (1)H, (13)C and (19)F NMR analyses. The conformation of the piperidin ring, in the solution state, was particularly studied from the coupling constants determined by recording a double-quantum filtered COSY experiment in phase-sensitive mode. (1)H NMR line-shape analysis was used, at temperatures varying between -5 and +60 degrees C, to determine the enthalpy of activation of the rotational barrier around the CN bond. Compound 1 crystallizes in the triclinic space group P1 with a=8.517(3) Angstrom, b=12.384(2) Angstrom, c=12.472(3) Angstrom, alpha=70.88(2) degrees, beta=82.04(2) degrees, gamma=83.58(2) degrees. The results strongly indicate that the solid and solution conformations are similar. Thermal stability and phases transitions were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore polymorphism screening was studied from recrystallization of 1 performed in seven solvents and by slurry conversion in water. The X-ray powder diffraction (XRPD) and differential scanning calorimetry results suggested that 1 crystallizes into one crystalline form which melts at 157 degrees C (DeltaH=132 J g(-1)). Topics: Calorimetry, Differential Scanning; Deuterium Oxide; Fumarates; Magnetic Resonance Spectroscopy; Models, Molecular; Molecular Conformation; Piperidines; Pyridines; Thermodynamics; X-Ray Diffraction | 2005 |