piperidines has been researched along with cifenline* in 5 studies
3 review(s) available for piperidines and cifenline
Article | Year |
---|---|
Profiles of aprindine, cibenzoline, pilsicainide and pirmenol in the framework of the Sicilian Gambit. The Guideline Committee for Clinical Use of Antiarrhythmic Drugs in Japan (Working Group of Arrhythmias of the Japanese Society of Electrocardiology).
The Vaughan Williams classification has been used widely by clinicians, cardiologists and researchers engaged in antiarrhythmic drug development and testing in many countries throughout the world since its initial proposal in the early 1970s. However, a major criticism of the Vaughan Williams system arose from the extent to which the categorization of drugs into classes I-IV led to oversimplified views of both shared and divergent actions. The Sicilian Gambit proposed a two-dimensional tabular framework for display of drug actions to solve these problems. From April to December 1996, members of the Guideline Committee met to discuss pharmacologic profiles of 4 antiarrhythmic drugs (aprindine, cibenzoline, pilsicainide, and pirmenol) that were not included in the original spreadsheet but are used widely in clinical practice in Japan. The discussion aimed to fit the drug profiles into the Gambit framework based on all the important literature published to date regarding the actions of the 4 drugs. This report is a summary of that deliberation. Topics: Animals; Anti-Arrhythmia Agents; Aprindine; Humans; Imidazoles; Lidocaine; Piperidines | 1999 |
Antiarrhythmic drug therapy. Recent advances and current status.
A number of conventional and newer antiarrhythmic agents are available for the treatment and prophylaxis of ventricular tachycardia and sudden death. Using a multifaceted approach of programmed electrical stimulation studies, drug level determinations, exercise tolerance testing, and 24-hour ambulatory electrocardiographic monitoring, the physician can identify those patients who require therapy and then predict the likelihood of efficacy with each antiarrhythmic agent. This approach affords evaluation of both aspects of the sudden death equation-ectopy frequency (triggering mechanism) and vulnerability to development of sustained ventricular tachycardia (substrate). After institution of therapy, careful follow-up is necessary to document sustained drug efficacy and detect side effects. Serious adverse reactions necessitate a change in antiarrhythmic therapy, as opposed to lowering drug dosage to an ineffective level. The unacceptably high incidence of sudden death due to electrical instability can be reversed only by a rigorous and dedicated long-term approach to the management of serious ventricular arrhythmias. Topics: Adrenergic beta-Antagonists; Ajmaline; Amiodarone; Anilides; Anti-Arrhythmia Agents; Aprindine; Arrhythmias, Cardiac; Benzeneacetamides; Bepridil; Bethanidine; Bretylium Tosylate; Disopyramide; Drug Administration Schedule; Encainide; Flecainide; Heart Conduction System; Humans; Imidazoles; Lidocaine; Mexiletine; Moricizine; Myocardial Contraction; Phenothiazines; Phenytoin; Piperidines; Procainamide; Propafenone; Propiophenones; Pyrrolidines; Quinidine; Tocainide; Verapamil | 1985 |
[New antiarrythmic drugs: mexiletine, tocainide, lorcainide, encainide, flecainide, propafenone, cipralan, sotalol].
Topics: Anilides; Animals; Anti-Arrhythmia Agents; Benzeneacetamides; Electrophysiology; Encainide; Flecainide; Hemodynamics; Humans; Imidazoles; Lidocaine; Mexiletine; Piperidines; Propafenone; Propiophenones; Sotalol; Tocainide | 1982 |
2 other study(ies) available for piperidines and cifenline
Article | Year |
---|---|
Blockade of 2,4-dinitrophenol induced ATP sensitive potassium current in guinea pig ventricular myocytes by class I antiarrhythmic drugs.
The aim was to assess the effects of various antiarrhythmic drugs on 2,4-dinitrophenol (DNP) induced outward current (IDNP), presumably the ATP sensitive K+ current (IK,ATP) of isolated cardiac cells and to discuss mechanisms involved in the hypoglycaemia which occurs in patients on these drugs.. The quasi-steady state current-voltage relationship from the isolated guinea pig ventricular cells was measured using whole cell voltage clamp techniques with a ramp pulse programme. The effects of seven different antiarrhythmic drugs on IDNP were examined. Action potentials were elicited at a rate of 0.2 Hz by an intracellular current injection.. DNP (50 mumol.litre-1) increased the quasi-steady state outward current at potentials positive to about -60 mV. This current (IDNP) was completely inhibited by the subsequent application of glibenclamide (1 mumol.litre-1), thereby suggesting that the IDNP is probably IK,ATP. Cibenzoline (10 mumol.litre-1, class Ia), disopyramide (30 mumol.litre-1, class Ia), and procainamide (100 mumol.litre-1, class Ia) significantly inhibited the IDNP by 95.5(SD 11.3)%, 77.8(21.2)%, and 76.4(23.9)% respectively. Flecainide (class 1c) inhibited the IDNP by 66.9(23.9)% at 10 mumol.litre-1 but not at 2 mumol.litre-1. Mexiletine (30 mumol.litre-1, class Ib), pilsicainide (50 mumol.litre-1, class Ic), and E4031 (10 mumol.litre-1, class III) at concentrations as high as approximately fivefold the clinically effective blood levels, did not suppress IDNP. Except for 10 mumol.litre-1 flecainide, all the concentrations listed above which blocked IDNP were within twofold of the clinical blood concentrations documented to be effective for suppression of arrhythmias. Cibenzoline, disopyramide, and procainamide, but not flecainide, belong to class Ia antiarrhythmic drugs. All these class Ia antiarrhythmic drugs "shortened" the action potential duration of guinea pig ventricular cells, an opposite change to that noted for multicellular preparations, eg, guinea pig papillary muscles.. Class Ia antiarrhythmic drugs (cibenzoline, disopyramide, and procainamide) inhibit IDNP (presumably IK,ATP) in guinea pig ventricular cells within a range of therapeutic concentrations. This inhibitory effect of IK,ATP can probably explain the hypoglycaemia which occurs in some patients receiving these drugs, and the prolongation of the action potential duration alleged to occur in "superfused" papillary muscles. Topics: 2,4-Dinitrophenol; Action Potentials; Adenosine Triphosphate; Animals; Anti-Arrhythmia Agents; Dinitrophenols; Disopyramide; Flecainide; Glyburide; Guinea Pigs; Heart Ventricles; Imidazoles; Lidocaine; Mexiletine; Myocardium; Piperidines; Potassium; Procainamide; Pyridines | 1992 |
[Pharmacokinetics and pharmacodynamics of class I antiarrhythmic agents after a single oral administration].
Topics: Administration, Oral; Anti-Arrhythmia Agents; Aprindine; Flecainide; Humans; Imidazoles; Lidocaine; Mexiletine; Piperidines; Propafenone | 1992 |