piperidines has been researched along with chrysin* in 3 studies
3 other study(ies) available for piperidines and chrysin
Article | Year |
---|---|
Effects of six compounds with different chemical structures on melanogenesis.
Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D Topics: Alkaloids; Animals; Benzodioxoles; Benzyl Compounds; Cholecalciferol; Flavonoids; Humans; Kaempferols; Melanins; Monophenol Monooxygenase; Pigmentation; Piperidines; Polyunsaturated Alkamides; Purines; Scopoletin; Vitiligo; Zebrafish | 2018 |
Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol.
Flavonoids have been discovered as novel inhibitors of glycogen phosphorylase (GP), a target to control hyperglycemia in type 2 diabetes. To elucidate the mechanism of inhibition, we have determined the crystal structure of the GPb-chrysin complex at 1.9 Å resolution. Chrysin is accommodated at the inhibitor site intercalating between the aromatic side chains of Phe285 and Tyr613 through π-stacking interactions. Chrysin binds to GPb approximately 15 times weaker (Ki=19.01 μM) than flavopiridol (Ki=1.24 μM), exclusively at the inhibitor site, and both inhibitors display similar behavior with respect to AMP. To identify the source of flavopiridols' stronger affinity, molecular docking with Glide and postdocking binding free energy calculations using QM/MM-PBSA have been performed and compared. Whereas docking failed to correctly rank inhibitor binding conformations, the QM/MM-PBSA method employing M06-2X/6-31+G to model the π-stacking interactions correctly reproduced the experimental results. Flavopiridols' greater binding affinity is sourced to favorable interactions of the cationic 4-hydroxypiperidin-1-yl substituent with GPb, with desolvation effects limited by the substituent conformation adopted in the crystallographic complex. Further successful predictions using QM/MM-PBSA for the flavonoid quercetagetin (which binds at the allosteric site) leads us to propose the methodology as a useful and inexpensive tool to predict flavonoid binding. Topics: Adenosine Monophosphate; Animals; Binding Sites; Binding, Competitive; Chromones; Crystallography, X-Ray; Enzyme Inhibitors; Flavones; Flavonoids; Glycogen Phosphorylase; Kinetics; Models, Molecular; Molecular Docking Simulation; Piperidines; Protein Conformation; Rabbits; Structure-Activity Relationship | 2013 |
Molecular dynamic behavior and binding affinity of flavonoid analogues to the cyclin dependent kinase 6/cyclin D complex.
The cyclin dependent kinases (CDKs), each with their respective regulatory partner cyclin that are involved in the regulation of the cell cycle, apoptosis, and transcription, are potentially interesting targets for cancer therapy. The CDK6 complex with cyclin D (CDK6/cycD) drives cellular proliferation by phosphorylation of specific key target proteins. To understand the flavonoids that inhibit the CDK6/cycD functions, molecular dynamics simulations (MDSs) were performed on three inhibitors, fisetin (FST), apigenin (AGN), and chrysin (CHS), complexed with CDK6/cycD, including the two different binding orientations of CHS: FST-like (CHS_A) and deschloro-flavopiridol-like (CHS_B). For all three inhibitors, including both CHS orientations, the conserved interaction between the 4-keto group of the flavonoid and the backbone V101 nitrogen of CDK6 was strongly detected. The 3'- and 4'-OH groups on the flavonoid phenyl ring and the 3-OH group on the benzopyranone ring of inhibitor were found to significantly increase the binding and inhibitory efficiency. Besides the electrostatic interactions, especially through hydrogen bond formation, the van der Waals (vdW) interactions with the I19, V27, F98, H100, and L152 residues of CDK6 are also important factors in the binding efficiency of flavonoids against the CDK6/cycD complex. On the basis of the docking calculation and MM-PBSA method, the order of the predicted inhibitory affinities of these three inhibitors toward the CDK6/cycD was FST > AGN > CHS, which is in good agreement with the experimental data. In addition, CHS preferentially binds to the active CDK6 in a different orientation to FST and AGN but similar to its related analog, deschloro-flavopiridol. The obtained results are useful as the basic information for the further design of potent anticancer drugs specifically targeting the CDK6 enzyme. Topics: Antineoplastic Agents, Phytogenic; Apigenin; Binding Sites; Crystallography, X-Ray; Cyclin D; Cyclin-Dependent Kinase 6; Flavonoids; Flavonols; Humans; Hydrogen Bonding; Molecular Conformation; Molecular Dynamics Simulation; Piperidines; Protein Binding; Static Electricity; Thermodynamics | 2012 |