piperidines has been researched along with bis(4-nitrophenyl)phosphate* in 2 studies
2 other study(ies) available for piperidines and bis(4-nitrophenyl)phosphate
Article | Year |
---|---|
Contribution of carboxylesterase in hamster to the intestinal first-pass loss and low bioavailability of ethyl piperate, an effective lipid-lowering drug candidate.
Ethyl piperate is an effective lipid-lowering drug candidate synthesized from piperine. However, its pharmacokinetic characteristics and oral absorption process remain unclear. A liquid chromatography-tandem mass spectrometry method was applied to determine the oral bioavailability of ethyl piperate. Simulated gastrointestinal pH conditions and intestinal washings were prepared to investigate their contributions to the loss of ethyl piperate. Hydrolysis by carboxylesterase (CES) was evaluated in vitro using microsomes and S9 fractions. In situ intestinal single-pass perfusion experiments were performed to estimate the role of CES in ethyl piperate absorption. The bioavailability of ethyl piperate was extremely low (0.47%) in hamster independent of gastrointestinal environmental effects. Ethyl piperate was a typical substrate of CES with kinetic parameters K(m) and V(max) of 7.56 ± 1.491 μM and 0.16 ± 0.008 nmol · min(-1) · mg protein(-1), respectively. CES was responsible for 85.8% of the intestinal hydrolysis of ethyl piperate. Specific inhibition of CES with bis-p-nitrophenyl phosphate (BNPP), decreased degradation clearance to 36% of control with no significant change in absorption clearance. This contrasted with the results of Caco-2 monolayer experiments, which showed a dramatic increase in the apparent permeability coefficient after BNPP treatment. mRNA levels for the CES isozyme, CES2A3, were similar among the three regions of hamster intestine and 60% less than those in liver; CES1B1 mRNA levels were even lower in the intestine and showed a proximal-to-distal decrease. In conclusion, CES markedly contributes to intestinal first-pass hydrolysis of ethyl piperate that is sufficient, but not necessary, to cause the observed extremely low bioavailability. Topics: Alkaloids; Animals; Anticholesteremic Agents; Benzodioxoles; Caco-2 Cells; Carboxylesterase; Cricetinae; Drug Stability; Fatty Acids, Unsaturated; Humans; Hydrolysis; Intestinal Absorption; Intestinal Mucosa; Male; Nitrophenols; Piperidines; Polyunsaturated Alkamides; RNA, Messenger | 2011 |
In vitro and in vivo trans-esterification of 1-[2(R)-(2-amino-2-methylpropionylamino)-3-(1H-indol-3-yl)propionyl]-3(S)-benzyl-piperidine-3-carboxylic acid ethyl ester and the effects of ethanol on its pharmacokinetics in rats.
To investigate the in vitro trans-esterification of 1-[2(R)-(2-amino-2-methylpropionylamino)-3-(1H-indol-3-yl)propionyl]-3(S)-benzyl-piperidine-3-carboxylic acid ethyl ester (compound A) and to determine the effects of ethanol on its in vivo pharmacokinetics in male Sprague-Dawley rats.. The effects of deuterated [d5]ethanol on the hydrolysis and trans-esterification of compound A in rat plasma and rat liver microsomes in the presence or absence of bis(p-nitrophenyl) phosphate (BNPP), a carboxylesterase inhibitor, were investigated. Following an oral pretreatment with deuterated ethanol in conjunction with an intravenous dose of compound A to rats, the pharmacokinetics of compound A and deuterated compound A were evaluated.. It was observed that the amount of deuterated compound A generated increased with increasing amounts of deuterated ethanol in incubates, whereas the amount of hydrolyzed product (compound B) decreased. BNPP inhibited both the hydrolysis and the trans-esterification of compound A. Furthermore, the pharmacokinetics of compound A in rats receiving ethanol was altered, such that the plasma clearance decreased by 1.5-fold and the elimination rate constant decreased by 2-fold. Deuterated compound A was determined, confirming that trans-esterification proceeded in vivo; approximately one third of the intravenous dose of compound A underwent trans-esterification.. In the presence of ethanol, compound A underwent trans-esterification catalyzed by carboxylesterases. Ethanol pretreatment resulted in a decrease in the in vivo clearance of compound A mainly due to trans-esterification with ethanol. Topics: Administration, Oral; Animals; Area Under Curve; Carboxylic Acids; Carboxylic Ester Hydrolases; Chromatography, Liquid; Deuterium; Drug Evaluation, Preclinical; Drug Interactions; Esterification; Esters; Ethanol; Human Growth Hormone; Hydrolysis; Injections, Intravenous; Male; Mass Spectrometry; Metabolic Clearance Rate; Microsomes, Liver; Nitrophenols; Piperidines; Rats; Rats, Sprague-Dawley | 2004 |