piperidines has been researched along with beta-carboline-3-carboxylic-acid-methyl-ester* in 1 studies
1 other study(ies) available for piperidines and beta-carboline-3-carboxylic-acid-methyl-ester
Article | Year |
---|---|
NMDA antagonists block restraint-induced increase in extracellular DOPAC in rat nucleus accumbens.
The effects of the N-methyl-D-aspartate (NMDA) receptor antagonists CPP, TCP, PK 26124 and ifenprodil, and of the minor tranquillizer diazepam on stress-induced changes of dopamine metabolism in the nucleus accumbens were investigated in the rat. Dopamine metabolism was assessed by measuring the extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) by means of in vivo differential pulse voltammetry with electrochemically pretreated carbon fiber electrodes. Physical immobilization of the rats for 4 min caused a marked and long-lasting increase in extracellular DOPAC levels in the nucleus accumbens. A similar, though shorter-lasting, augmentation of extracellular DOPAC was observed in the nucleus accumbens after systemic administration of the anxiogenic agent methyl-beta-carboline-3-carboxylate (beta-CCM) (10 mg/kg s.c.). Pretreatment with CPP (1 mg/kg i.p.), TCP (3 mg/kg i.p.), PK 26124 (3 mg/kg i.p.), ifenprodil (3 mg/kg i.p.) or diazepam (2 mg/kg i.p.) totally antagonized the immobilization-induced increase in extracellular DOPAC in the nucleus accumbens. Diazepam and the benzodiazepine (omega 1-2) receptor antagonist flumazenil (30 mg/kg i.p.), but not ifenprodil, also antagonized the beta-CCM-induced activation of dopamine metabolism in the nucleus accumbens. Finally, systemic administration of haloperidol (25 micrograms/kg i.p.) increased the extracellular concentrations of DOPAC in the nucleus accumbens, but pretreatment with ifenprodil (3 mg/kg i.p.) did not modify this response. These data indicate that NMDA receptor antagonists prevent the activation of dopamine metabolism in the nucleus accumbens caused by immobilization stress but not by beta-CCM-induced anxiogenic stimulation. These results suggest that NMDA receptor antagonists may possess an anxiolytic-like action in the rodent, which is exerted via neuroanatomical circuits distinct from those acted upon by diazepam. Topics: 3,4-Dihydroxyphenylacetic Acid; Adrenergic alpha-Antagonists; Animals; Aspartic Acid; Carbolines; Convulsants; Diazepam; Male; N-Methylaspartate; Nucleus Accumbens; Phenylacetates; Piperazines; Piperidines; Rats; Rats, Inbred Strains; Restraint, Physical; Riluzole; Septal Nuclei; Thiazoles | 1989 |