piperidines has been researched along with anagliptin* in 3 studies
1 review(s) available for piperidines and anagliptin
Article | Year |
---|---|
The pharmacokinetic considerations and adverse effects of DPP-4 inhibitors [corrected].
Dipeptidyl-peptidase-4 (DPP-4) inhibitors are a class of anti-hyperglycemic agents with proven efficacy in patients with type 2 diabetes mellitus (T2DM).. This review considers the pharmacokinetic profile, adverse effects and drug interactions of DPP-4 inhibitors. DPP-4 inhibitors have certain differences in their structure, metabolism, route of elimination and selectivity for DPP-4 over structurally related enzymes, such as DPP-8/DPP-9. They have a low potential for drug interactions, with the exception of saxagliptin that is largely metabolized by cytochrome CYP3A4/A5. Reports of pancreatitis and pancreatic cancer have raised concerns regarding the safety of DPP-4 inhibitors and are under investigation. Post-marketing surveillance has revealed less common adverse effects, especially a number of skin- and immune-related adverse effects. These issues are covered in the present review.. DPP-4 inhibitors are useful and efficient drugs. DPP-4 inhibitors have similar mechanism of action and similar efficacy. However, DPP-4 inhibitors have certain differences in their pharmacokinetic properties that may be associated with different clinical effects and adverse event profiles. Although clinical trials indicated a favorable safety profile, post-marketing reports revealed certain safety aspects that need further investigation. Certainly, more research is needed to clarify if the differences among DPP-4 inhibitors could lead to a different clinical and safety profile. Topics: Adamantane; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Interactions; Humans; Linagliptin; Nitriles; Piperidines; Piperidones; Purines; Pyrazines; Pyrazoles; Pyrimidines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Thiazolidines; Triazoles; Uracil; Vildagliptin | 2014 |
1 trial(s) available for piperidines and anagliptin
Article | Year |
---|---|
Comparison of effects of anagliptin and alogliptin on serum lipid profile in type 2 diabetes mellitus patients.
Anagliptin (ANA) improves dyslipidemia in addition to blood glucose levels. However, there are no comparative studies on the effects of ANA and other dipeptidyl peptidase-4 inhibitors on serum lipid profile. We compared the effects of ANA on serum lipid profile with those of alogliptin (ALO) in type 2 diabetes mellitus outpatients.. The study participants were 87 type 2 diabetes mellitus patients who had been treated with dipeptidyl peptidase-4 inhibitors for ≥8 weeks and had a low-density lipoprotein cholesterol (LDL-C) level of ≥120 mg/dL. Participants were switched to either 200 mg/day ANA or 25 mg/day ALO for 24 weeks.. There was no significant difference in percentage change in LDL-C level at 24 weeks between the ANA and ALO groups. Treatment with ANA for 12 weeks significantly decreased LDL-C levels, one of the secondary end-points. Treatment with ANA for 24 weeks significantly improved apolipoprotein B-100 levels, and the percentage change in LDL-C levels at 24 weeks correlated significantly with the percentage change in apolipoprotein B-100 levels in the ANA group.. The LDL-C-lowering effects of ANA and ALO at 24 weeks were almost similar in patients with type 2 diabetes mellitus. However, the results showed a tendency for a decrease in LDL-C level at 24 weeks in the ANA group, and that such improvement was mediated, at least in part, through the suppression of apolipoprotein B-100 synthesis. Topics: Aged; Apolipoprotein B-100; Blood Glucose; Cholesterol, LDL; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Female; Humans; Hypoglycemic Agents; Lipid Metabolism; Lipids; Male; Piperidines; Pyrimidines; Treatment Outcome; Uracil | 2018 |
1 other study(ies) available for piperidines and anagliptin
Article | Year |
---|---|
Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury.
Dipeptidyl peptidase (DPP)-4 is an enzyme that cleaves and inactivates incretin hormones capable of stimulating insulin secretion from pancreatic β-cells. DPP-4 inhibitors are now widely used for the treatment of type 2 diabetes. Experimental studies have suggested a renoprotective role of DPP-4 inhibitors in various models of diabetic kidney disease, which may be independent of lowering blood glucose levels. In the present study, we examined the effect of DPP-4 inhibitors in the rat Thy-1 glomerulonephritis model, a nondiabetic glomerular injury model. Rats were injected with OX-7 (1.2 mg/kg iv) and treated with the DPP-4 inhibitor alogliptin (20 mg·kg(-1)·day(-1)) or vehicle for 7 days orally by gavage. Alogliptin significantly reduced the number of CD68-positive inflammatory macrophages in the kidney, which was associated with a nonsignificant tendency to ameliorate glomerular injury and reduce proteinuria. Another DPP-4 inhibitor, anagliptin (300 mg·kg(-1)·day(-1) mixed with food) and a glucagon-like peptide-1 receptor agonist, exendin-4 (10 mg/kg sc), similarly reduced CD68-positive macrophage infiltration to the kidney. Furthermore, ex vivo transmigration assays using peritoneal macrophages revealed that exendin-4, but not alogliptin, dose dependently reduced monocyte chemotactic protein-1-stimulated macrophage infiltration. These data suggest that DPP-4 inhibitors reduced macrophage infiltration directly via glucagon-like peptide-1-dependent signaling in the rat Thy-1 nephritis model and indicate that the control of inflammation by DPP-4 inhibitors is useful for the treatment of nondiabetic kidney disease models. Topics: Animals; Anti-Inflammatory Agents; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antilymphocyte Serum; Cell Line; Chemokine CCL2; Chemotaxis; Cytoprotection; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Exenatide; Glomerulonephritis; Glucagon-Like Peptide-1 Receptor; Kidney Glomerulus; Macrophages, Peritoneal; Male; Mice, Inbred C57BL; Peptides; Piperidines; Proteinuria; Pyrimidines; Rats, Sprague-Dawley; Receptors, Glucagon; Signal Transduction; Uracil; Venoms | 2015 |