piperidines and alpha-methylserotonin

piperidines has been researched along with alpha-methylserotonin* in 4 studies

Other Studies

4 other study(ies) available for piperidines and alpha-methylserotonin

ArticleYear
Diverse regulation of atrial natriuretic peptide secretion by serotonin receptor subtypes.
    Cardiovascular research, 2003, Aug-01, Volume: 59, Issue:2

    Serotonin (5-hydroxytryptamine [5-HT]) receptors are located in peripheral tissues as well as in the central nervous system. Serotonin receptors mediate positive inotropic and chronotropic effects in atria. The aim of this study was to investigate physiological role of endogenous serotonin on the regulation of atrial natriuretic peptide (ANP) secretion from the atria.. An isolated perfused nonbeating rat atrial model was used. Changes in atrial volume induced by increasing intra-atrial pressure were measured. The concentration of ANP was measured by radioimmunoassay and the translocation of ECF was measured by [3H]-inulin clearance.. Serotonin, an endogenous 5-HT receptor agonist, caused concentration-dependent suppressions of stretch-induced ANP secretion, which were less pronounced than those caused by alpha-methyl-5-HT maleate, a 5-HT(2) receptor selective agonist. The suppression of stretch-induced ANP secretion due to serotonin and alpha-methyl-5-HT maleate was attenuated by ketanserin, a 5-HT(2) receptor antagonist, and accentuated by RS23597-190, a 5-HT(4) receptor antagonist. The suppressive effect of serotonin on ANP secretion was attenuated by neomycin, staurosporine, and chelerythrine. In contrast, 2-[1-(4-piperonyl)piperazinyl]benzothiazole, a 5-HT(4) receptor selective agonist, caused an accentuation of stretch-induced ANP secretion, which was completely blocked by RS23597-190 and SB203186 HCl but not by ketanserin. This effect was not affected by MDL12330, KT-5720, or H-89. The intracellular Ca(2+) concentration in single atrial myocytes was not changed by serotonin and agonist for either 5-HT(2) or 5-HT(4) receptor.. These results suggest that atrial 5-HT(2) and 5-HT(4) receptor agonists have opposite actions on the regulation of ANP secretion and the suppressive effect of serotonin on the ANP secretion may act through 5-HT(2) receptor and phospholipase C pathway.

    Topics: Adenylyl Cyclase Inhibitors; Alkaloids; Aminobenzoates; Animals; Atrial Natriuretic Factor; Benzophenanthridines; Benzothiazoles; Calcium; Carbazoles; Cyclic AMP-Dependent Protein Kinases; Depression, Chemical; Dose-Response Relationship, Drug; Heart; Heart Atria; Imines; Indoles; Isoquinolines; Ketanserin; Male; Myocytes, Cardiac; Neomycin; para-Aminobenzoates; Perfusion; Phenanthridines; Piperazines; Piperidines; Protein Kinase C; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, Serotonin; Receptors, Serotonin, 5-HT4; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Staurosporine; Sulfonamides; Thiazoles; Type C Phospholipases

2003
The terminals of myenteric intrinsic primary afferent neurons of the guinea-pig ileum are excited by 5-hydroxytryptamine acting at 5-hydroxytryptamine-3 receptors.
    Neuroscience, 2000, Volume: 101, Issue:2

    The aim of this study was to identify the receptor type(s) by which 5-hydroxytryptamine applied to the intestinal mucosa excites the terminals of myenteric AH neurons. The AH neurons have been identified as the intrinsic primary afferent (sensory) neurons in guinea-pig small intestine and 5-hydroxytryptamine has been identified as a possible intermediate in the sensory transduction process. Intracellular recordings were taken from AH neurons located within 1mm of intact mucosa to which 5-hydroxytryptamine was applied. Trains of action potentials and/or slow depolarizing responses were recorded in AH neurons in response to mucosal application of 5-hydroxytryptamine (10 or 20microM) or the 5-hydroxytryptamine-3 receptor agonist, 2-methyl-5-hydroxytryptamine (1 or 3mM), and to electrical stimulation of the mucosa. The 5-hydroxytryptamine-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (100microM), and the 5-hydroxytryptamine-1,2,4 receptor agonist, 5-methoxytryptamine (10microM), did not elicit such responses. The 5-hydroxytryptamine-3 receptor-selective antagonist, granisetron (typically 1microM), and the 5-hydroxytryptamine-3,4 receptor antagonist, tropisetron (typically 1microM), each reduced or abolished the responses to 5-hydroxytryptamine, while the selective 5-hydroxytryptamine-4 receptor antagonist, SB 204070 (1microM), did not. It is concluded that application of 5-hydroxytryptamine to the mucosa activates a 5-hydroxytryptamine-3 receptor that triggers action potential generation in the mucosal nerve terminals of myenteric AH neurons.

    Topics: 5-Methoxytryptamine; Action Potentials; Animals; Dioxanes; Granisetron; Guinea Pigs; Ileum; Indoles; Myenteric Plexus; Neurons, Afferent; Piperidines; Presynaptic Terminals; Receptors, Serotonin; Receptors, Serotonin, 5-HT3; Serotonin; Signal Transduction; Tropisetron

2000
5-HT inhibits spontaneous contractility of isolated sheep mesenteric lymphatics via activation of 5-HT(4) receptors.
    Microvascular research, 2000, Volume: 60, Issue:3

    Spontaneous isometric contractions were measured in rings of sheep mesenteric lymphatic vessels in vitro. 5-Hydroxytryptamine (5-HT) produced a concentration-dependent decrease in spontaneous contraction frequency and force which was not antagonised by either the nonspecific 5-HT(1)/5-HT(2) receptor antagonist methysergide (1 microM) or the 5-HT(3) receptor antagonist ondansetron (1 microM). The 5-HT(4) receptor agonist BIMU-8 mimicked the inhibitory effect of 5-HT and its effects were abolished by the 5-HT(4) receptor antagonist DAU 6285 (1 microM). DAU-6285 also abolished the inhibitory effect of 5-HT and unmasked a weak excitatory response, which was mimicked by the 5-HT(2) receptor agonist alpha-methyl-5-hydroxytryptamine maleate. This excitatory response was, in turn, blocked by the 5-HT(2) receptor antagonist pirenperone (1 microM). The results of this study suggest that sheep mesenteric lymphatics possess both 5-HT(4) receptors and 5-HT(2) receptors. The inhibitory 5-HT(4) receptor appeared to be the predominant subtype since the excitatory response to 5-HT could only be observed in the presence of the 5-HT(4) receptor antagonist DAU 6285.

    Topics: Animals; Benzimidazoles; Bridged Bicyclo Compounds, Heterocyclic; In Vitro Techniques; Isometric Contraction; Lymphatic System; Methysergide; Muscle, Smooth; Ondansetron; Piperidines; Receptors, Serotonin; Receptors, Serotonin, 5-HT4; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Sheep

2000
Effects of the 5-HT1C/5-5-HT2 receptor agonists DOI and alpha-methyl-5-HT on plasma glucose and insulin levels in the rat.
    European journal of pharmacology, 1990, Oct-23, Volume: 187, Issue:3

    Administration of the 5-HT1C/5-HT2 receptor agonist 1-(2,5-dimethoxy-4- iodophenyl)-2-aminopropane (DOI, 0.125-2.0 mg/kg i.v.) triggered dose-dependent increases in plasma glucose; plasma insulin levels remained unchanged. Pretreatment with the 5-HT1C/5-HT2 receptor antagonists LY 53857, ritanserin, or the mixed 5-HT2/alpha 1-adrenoceptor antagonist ketanserin either diminished or prevented the hyperglycemic effect of DOI (0.5 mg/kg). Administration of the mixed 5-HT1C receptor agonists/5-HT2 receptor antagonists 1-(3-chlorophenyl)-piperazine (mCPP) or 1-(3-trifluoromethyl)phenyl)piperazine level (TFMPP) did not affect plasma glucose levels. However, pretreatment with mCPP or TFMPP decreased DOI-induced hyperglycemia in a dose-dependent manner. The alpha 2-adrenoceptor antagonist idazoxan and the ganglionic blocker hexamethonium both decreased DOI-induced hyperglycemia, Whilst the alpha 1-adrenoceptor antagonist prazosin amplified the rise in plasma glucose elicited by DOI. The peripherally acting 5-HT1C/5-HT2 receptor agonist alpha-methyl-5-HT (0.5-1.0 mg/kg i.v.) triggered a rise in plasma glucose levels that was associated with an increase in plasma insulin levels. Pretreatment with LY 53857 diminished alpha-methyl-5-HT-induced hyperglycemia. These data indicate that 5-HT2 receptors, but not 5-HT1C receptors, and catecholaminergic systems, mediate DOI-induced hyperglycemia. Moreover, it is suggested that the inhibition of insulin release by DOI is centrally mediated, and that activation of peripheral 5-HT2 receptors may affect glycemia.

    Topics: Amphetamines; Animals; Blood Glucose; Catecholamines; Ergolines; Hyperglycemia; Insulin; Male; Piperazines; Piperidines; Rats; Rats, Inbred Strains; Receptors, Serotonin; Ritanserin; Serotonin

1990