piperidines and 7-deazaguanine

piperidines has been researched along with 7-deazaguanine* in 2 studies

Other Studies

2 other study(ies) available for piperidines and 7-deazaguanine

ArticleYear
DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH.
    Environmental and molecular mutagenesis, 2000, Volume: 36, Issue:1

    Free hydroxyl radicals (free (.)OH), singlet oxygen ((1)O(2)), or (. )OH produced by DNA-copper-hydroperoxo complexes are possible DNA-damaging reactive oxygen species (ROS) in the reaction system containing copper, catechol, and DNA. para-Chlorobenzoic acid (pCBA) degradation studies revealed that CuCl(2) mixed with catechol produced free (.)OH. In the presence of DNA, however, inhibition of the pCBA degradation suggested that another ROS is responsible for the DNA degradation. Of a series of ROS scavengers investigated, only KI, NaN(3), and Na-formate-all of the salts tested-strongly inhibited the DNA degradation, suggesting that the ionic strength rather than the reactivity of the individual scavengers could be responsible for the observed inhibition. The ionic strength effect was confirmed by increasing the concentration of phosphate buffer, which is a poor (.)OH scavenger, and was interpreted as the result of destabilization of DNA-copper-hydroperoxo complexes. Piperidine-labile site patterns in DNA degraded by copper and catechol showed that the mixture of Cu(II) and catechol degrades DNA via the intermediate formation of a DNA-copper-hydroperoxo complex. Replacement of guanine by 7-deazaguanine did not retard the DNA degradation, suggesting that the DNA-copper-hydroperoxo complexes do not bind to the guanine N-7 as proposed in the literature.

    Topics: Catechols; Copper; DNA; DNA Damage; Free Radical Scavengers; Guanine; Hydroxyl Radical; Osmolar Concentration; Piperidines; Reactive Oxygen Species

2000
Anomalous cross-linking by mechlorethamine of DNA duplexes containing C-C mismatch pairs.
    Biochemistry, 1999, Mar-23, Volume: 38, Issue:12

    Nitrogen mustards such as mechlorethamine have previously been shown to covalently cross-link DNA through the N7 position of the two guanine bases of a d[GXC].d[GYC] duplex sequence, a so-called 1,3 G-G-cross-link, when X-Y = C-G or T-A. Here, we report the formation of a new mechlorethamine cross-link with the d[GXC].d[GYC] fragment when X-Y is a C-C mismatch pair. Mechlorethamine cross-links this fragment preferentially between the two mismatched cytosine bases, rather than between the guanine bases. The cross-link also forms when one or both of the guanine bases of the d[GCC].d[GCC] fragment are replaced by N7-deazaguanine, and, more generally, forms with any C-C mismatch, regardless of the flanking base pairs. Piperidine cleavage of the cross-link species containing the d[GCC].d[GCC] sequence gives DNA fragments consistent with alkylation at the mismatched cytosine bases. We also provide evidence that the cross-link reaction occurs between the N3 atoms of the two cytosine bases by showing that the formation of the C-C cross-link is pH dependent for both mechlorethamine and chlorambucil. Dimethyl sulfate (DMS) probing of the cross-linked d[GCC].d[GCC] fragment showed that the major groove of the guanine adjacent to the C-C mismatch is still accessible to DMS. In contrast, the known minor groove binder Hoechst 33258 inhibits the cross-link formation with a C-C mismatch pair flanked by A-T base pairs. These results suggest that the C-C mismatch is cross-linked by mechlorethamine in the minor groove. Since C-C pairs may be involved in unusual secondary structures formed by the trinucleotide repeat sequence d[CCG]n, and associated with triplet repeat expansion diseases, mechlorethamine may serve as a useful probe for these structures.

    Topics: Alkylating Agents; Alkylation; Base Pair Mismatch; Bisbenzimidazole; Cross-Linking Reagents; DNA; Guanine; Hydrogen-Ion Concentration; Mechlorethamine; Nucleic Acid Conformation; Nucleic Acid Heteroduplexes; Piperidines; Sulfuric Acid Esters

1999