piperidines and 4-hydroxy-2-nonenal

piperidines has been researched along with 4-hydroxy-2-nonenal* in 2 studies

Other Studies

2 other study(ies) available for piperidines and 4-hydroxy-2-nonenal

ArticleYear
Disruption of ion-trafficking system in the cochlear spiral ligament prior to permanent hearing loss induced by exposure to intense noise: possible involvement of 4-hydroxy-2-nonenal as a mediator of oxidative stress.
    PloS one, 2014, Volume: 9, Issue:7

    Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K(+) transport apparatuses including Na(+), K(+)-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs) following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx)26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na(+), K(+)-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs). One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K(+)-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na(+), K(+)-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, N(ω)-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na(+), K(+)-ATPase α1, as well as Na(+), K(+)-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na(+), K(+)-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na(+), K(+)-ATPase activity in the cochlear lateral wall structures.

    Topics: Aldehydes; Animals; Cell Communication; Connexin 26; Connexin 30; Connexins; Free Radical Scavengers; Free Radicals; Gene Expression Regulation; Hearing Loss, Noise-Induced; Ion Transport; Male; Mice; Mice, Transgenic; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase Type I; Noise; Oxidative Stress; Piperidines; Primary Cell Culture; Signal Transduction; Sodium-Potassium-Exchanging ATPase; Spiral Ligament of Cochlea; Stria Vascularis

2014
Development of a derivatisation method for the analysis of aldehyde modified amino acid residues in proteins by Fourier transform mass spectrometry.
    Analytica chimica acta, 2009, Feb-09, Volume: 633, Issue:2

    A method was developed for the analysis of amino acids within bovine serum albumin (BSA) which had been modified by reaction with different enals. BSA was reacted with the aldehydes and the reaction products were stabilised by reaction with NaBH(4). The protein was then hydrolysed with 6N HCl and the hydrolysis products were analysed by liquid chromatography-mass spectrometry (LC-MS). The modified amino acids were derivatised with propylchloroformate. High resolution mass spectrometry carried out using an LTQ-Orbitrap instrument which was able to characterise a wide range of adducts. In addition double adducts were observed to be formed with 4-hydroxynonenal (HNE) and lysine or lysine+histidine. Qualitatively it was possible to consistently observe a pyridinium adduct formed between lysine and pentenal in human plasma from normal subjects.

    Topics: Aldehydes; Amino Acids; Animals; Blood Proteins; Chromatography, Liquid; Fourier Analysis; Histidine; Humans; Lysine; Mass Spectrometry; Piperidines; Pyridinium Compounds; Schiff Bases; Serum Albumin, Bovine

2009