piperidines has been researched along with 4-aminoquinoline* in 2 studies
2 other study(ies) available for piperidines and 4-aminoquinoline
Article | Year |
---|---|
Molecular dynamics simulation and 3D-pharmacophore analysis of new quinoline-based analogues with dual potential against EGFR and VEGFR-2.
Epidermal growth factor and vascular endothelial growth factor-2 are important targets of tyrosine kinase for the treatment of various cancerous diseases. Combination of inhibition of both targets to produce synergy in the signal pathway is a critical approach to identify novel tyrosine kinase inhibitors. In this study, a series of new compounds derived from the 4-aminoquinoline as dual inhibitors were synthesized. The obtained results of cytotoxicity assay against human carcinoma cell lines indicated 0.8 µM for 4c against A549 showing its high efficiency in comparison to erlotinib. Pharmacophore modeling as a structure-based method was investigated on dual inhibitors and 4c which was compared with co-crystallized in the active site of EGFR and VEGFR-2. They have shown the same binding orientation as vandetanib, erlotinib and sorafenib. Molecular dynamics simulation results approved that Met769, Lys721, Asp1046, and Lys868 are key residues in two binding sites for dual activity. Ala1050 and Pro968 were identified as new amino acid interaction sites for dual inhibition. 4c showed more favorable stability than vandetanib in VEGFR-2 receptor for a 50 ns dynamic simulation. The high correlation between essential pharmacophoric features of designed compounds and lead inhibitors interactions provided a deeper insight into the structural basis of 4-aminoquinoline inhibition. Topics: A549 Cells; Aminoquinolines; Antineoplastic Agents; Binding Sites; Cell Line, Tumor; ErbB Receptors; Erlotinib Hydrochloride; Humans; Molecular Docking Simulation; Molecular Dynamics Simulation; Piperidines; Protein Conformation; Quinazolines; Quinolines; Sorafenib; Vascular Endothelial Growth Factor Receptor-2 | 2020 |
The nature and origin of calcium-insensitive miniature end-plate potentials at rodent neuromuscular junctions.
1. To study the nature and origin of slow-rising, Ca2+-insensitive miniature end-plate potentials (m.e.p.p.s) in mammalian muscle we used intracellular recording techniques and drugs which block acetylcholine (ACh) synthesis or the uptake of ACh into synaptic vesicles. Slow m.e.p.p.s were induced in vivo by paralysing the extensor digitorum longus muscle of the rat with botulinum toxin type A or in vitro by the application of 4-aminoquinoline to the mouse diaphragm nerve-muscle preparation. 2. Hemicholinium-3, which blocks ACh synthesis, reduced the amplitude of all synaptic potentials including slow m.e.p.p.s, but only if the nerve was stimulated. 3. 2(4-phenylpiperidino)cyclohexanol (AH-5183), which blocks the active uptake of ACh into synaptic vesicles, reduced both the frequency and the amplitude of slow m.e.p.p.s and did so without requiring nerve stimulation. 4. No correlation was observed between the molecular leakage of ACh from the motor nerve and the frequency and amplitude of slow m.e.p.p.s. 5. We conclude that slow m.e.p.p.s are caused by the release of ACh from the nerve terminal, possibly from a small pool of synaptic vesicle-like structures. Topics: Acetylcholine; Action Potentials; Aminoquinolines; Animals; Botulinum Toxins; Calcium; Hemicholinium 3; In Vitro Techniques; Mice; Motor Endplate; Neuromuscular Depolarizing Agents; Neuromuscular Junction; Phencyclidine; Piperidines; Rats; Rats, Inbred Strains; Temperature; Time Factors | 1986 |