piperidines has been researched along with 2-2--azobis(2-amidinopropane)* in 3 studies
3 other study(ies) available for piperidines and 2-2--azobis(2-amidinopropane)
Article | Year |
---|---|
Nitroxides inhibit peroxyl radical-mediated DNA scission and enzyme inactivation.
Nitroxides are cell-permeable stable radicals that protect biomolecules from oxidative damage in several ways. The mechanisms of protection studied to date include removal of superoxide radicals as SOD-mimics, oxidation of transition metal ions to preempt the Fenton reaction, and scavenging carbon-centered radicals. However, there is no agreement regarding the reaction of piperidine nitroxides with peroxyl radicals. The question of whether they can protect by scavenging peroxyl radicals is important because these radicals are formed in the presence of oxygen abundant in biological tissues. To further our understanding of the antioxidative behavior of piperidine nitroxides, we studied their effect on biochemical systems exposed to the water soluble radical initiator 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH). AAPH thermally decomposes to yield tert-amidinopropane radicals (t-AP(*)) that readily react with oxygen to form peroxyl radicals (t-APOO(*)). It has recently been reported that piperidine nitroxides protect plasmid DNA from t-AP(*) though not from t-APOO(*). The present study was directed at the question of whether these nitroxides can protect biological systems from damage inflicted by peroxyl radicals. The reaction of nitroxides with AAPH-derived radicals was followed by cyclic voltammetry and electron paramagnetic resonance spectroscopy, whereas the accumulation of peroxide was iodometrically assayed. Assaying DNA damage in vitro, we demonstrate that piperidine nitroxides protect from both t-AP(*) and t-APOO(*). Similarly, nitroxides inhibit AAPH-induced enzyme inactivation. The results indicate that piperidine nitroxides protect the target molecule by reacting with and detoxifying peroxyl radicals. Topics: Amidines; Cyclic N-Oxides; DNA; DNA Damage; Electron Spin Resonance Spectroscopy; Enzyme Activation; Free Radicals; Glucose; Glucose Oxidase; Hydrogen Peroxide; Oxidants; Oxidation-Reduction; Peroxides; Piperidines | 2002 |
The effects of nitroxide radicals on oxidative DNA damage.
The indolinonic and quinolinic aromatic nitroxides synthesized by us are a novel class of biological antioxidants, which afford a good degree of protection against free radical-induced oxidation in different lipid and protein systems. To further our understanding of their antioxidant behavior, we thought it essential to have more information on their effects on DNA exposed to free radicals. Here, we report on the results obtained after exposure of plasmid DNA and calf thymus DNA to peroxyl radicals generated by the water-soluble radical initiator, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), and the protective effects of the aromatic nitroxides and their hydroxylamines, using a simple in vitro assay for DNA damage. In addition, we also tested for the potential of these nitroxides to inhibit hydroxyl radical-mediated DNA damage inflicted by Fenton-type reactions using copper and iron ions. The commercial aliphatic nitroxides 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and bis(2,2, 6,6-tetramethyl-1-oxyl-piperidin-4-yl)sebacate (TINUVIN 770) were included for comparison. The results show that the majority of compounds tested protect: (i) both plasmid DNA and calf thymus DNA against AAPH-mediated oxidative damage in a concentration-dependent fashion (1-0.1 mM), (ii) both Fe(II) and Cu(I) induced DNA oxidative damage. However, all compounds failed to protect DNA against damage inflicted by the presence of the transition metals in combination with H(2)O(2). The differences in protection between the compounds are discussed in relation to their molecular structure and chemical reactivity. Topics: Amidines; Animals; Cattle; Copper; Cyclic N-Oxides; DNA; DNA Damage; DNA, Bacterial; DNA, Recombinant; Free Radical Scavengers; Free Radicals; Heterocyclic Compounds, 2-Ring; Hydrogen Peroxide; Hydroxylamines; Iron; Oxidants; Oxidative Stress; Piperidines; Quinolones; Spin Labels; Triazoles | 2000 |
Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine.
The reactions of hydroxylamine 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine hydrochloride (TEMPONE-H) with peroxynitrite, superoxide and peroxyl radicals were studied. It was shown that under these reactions TEMPONE-H is oxidized into a stable nitroxide 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidi-noxyl (TEMPONE). The reactivity of TEMPONE-H towards reactive oxygen species was compared with the spin traps DMPO and TMIO as well as with DMSO and SOD. The rate constants of reactions of TEMPONE-H with peroxynitrite and superoxide radicals were 6 x 10(9) M(-1)s(-1) and 1.2x10(4) M(-1)s(-1), respectively. Using TEMPONE-H the sensitivity in the detection of peroxynitrite or superoxide radical was about 10-fold higher than using the spin traps DMPO or TMIO. Thus, TEMPONE-H may be used as a spin trap in chemical and biological systems to quantify peroxynitrite and superoxide radical formation. Topics: Amidines; Dimethyl Sulfoxide; Electron Spin Resonance Spectroscopy; Free Radicals; Kinetics; Molsidomine; Nitrates; Peroxides; Piperidines; Reactive Oxygen Species; Spin Labels; Superoxides; Triacetoneamine-N-Oxyl | 1997 |