piperidines has been researched along with 2-(2-aminoethyl)pyridine* in 2 studies
2 other study(ies) available for piperidines and 2-(2-aminoethyl)pyridine
Article | Year |
---|---|
Pharmacological Evidence that Histamine H3 Receptors Mediate Histamine-Induced Inhibition of the Vagal Bradycardic Out-flow in Pithed Rats.
In vivo stimulation of cardiac vagal neurons induces bradycardia by acetylcholine (ACh) release. As vagal release of ACh may be modulated by autoreceptors (muscarinic M2 ) and heteroreceptors (including serotonin 5-HT1 ), this study has analysed the pharmacological profile of the receptors involved in histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats. For this purpose, 180 male Wistar rats were pithed, artificially ventilated and pre-treated (i.v.) with 1 mg/kg atenolol, followed by i.v. administration of physiological saline (1 ml/kg), histamine (10, 50, 100 and 200 μg/kg) or the selective histamine H1 (2-pyridylethylamine), H2 (dimaprit), H3 (methimepip) and H4 (VUF 8430) receptor agonists (1, 10, 50 and 100 μg/kg each). Under these conditions, electrical stimulation (3, 6 and 9 Hz; 15 ± 3 V and 1 ms) of the vagus nerve resulted in frequency-dependent bradycardic responses, which were (i) unchanged during the infusions of saline, 2-pyridylethylamine, dimaprit or VUF 8430; and (ii) dose-dependently inhibited by histamine or methimepip. Moreover, the inhibition of the bradycardia caused by 50 μg/kg of either histamine or methimepip (which failed to inhibit the bradycardic responses to i.v. bolus injections of acetylcholine; 1-10 μg/kg) was abolished by the H3 receptor antagonist JNJ 10181457 (1 mg/kg, i.v.). In conclusion, our results suggest that histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats is mainly mediated by pre-junctional activation of histamine H3 receptors, as previously demonstrated for the vasopressor sympathetic out-flow and the vasodepressor sensory CGRPergic (calcitonin gene-related peptide) out-flow. Topics: Animals; Bradycardia; Heart Rate; Histamine; Histamine Agonists; Histamine H3 Antagonists; Imidazoles; Male; Piperidines; Pyridines; Rats; Rats, Wistar; Receptors, Histamine H3; Vagus Nerve | 2016 |
Histamine affects interleukin-4, interleukin-5, and interferon-gamma production by human T cell clones from the airways and blood.
High levels of histamine can be found in the airways of asthma patients. This study describes the effects of histamine on anti-CD3-induced production of IL-4, IL-5, and IFN-gamma by T cell clones from subjects with allergic asthma and healthy subjects. T cell clones were obtained from bronchoalveolar lavage (BAL) fluid and blood. The number of clones tested, and the percentage of clones in which histamine inhibited or enhanced cytokine production by more than 25%, were as follows: IL-4, 47, 8.5%, and 4.3%; IL-5, 43, 14%, and 30%; and IFN-gamma, 52, 40%, and 15%. Inhibition of IL-5 and IFN-gamma production was reversed by IL-2. The enhancement of IFN-gamma production was associated with an enhancement of both IL-2 production and proliferation. In 21% of the clones a combined effect consisting of inhibition of IFN-gamma production and enhancement of IL-5 production was found. This response was reversed by H2-receptor antagonists and was significantly associated with a histamine-induced increase in intracellular levels of cAMP. The role of cAMP in mediating the histamine effects was supported by the observations that the beta2-agonist salbutamol had effects similar to histamine and that high concentrations of PGE2 mimicked the inhibitory effects of histamine. Clones from BAL fluid and blood showed similar responses, as did clones from patients with asthma and from control subjects. The enhancement of IFN-gamma production by histamine, however, was found only in clones from healthy subjects. The results warrant further investigations on the role of cAMP in the regulation of cytokine production. Topics: Adenylyl Cyclases; Adrenergic beta-Agonists; Albuterol; Asthma; Bronchoalveolar Lavage Fluid; Clone Cells; Cyclic AMP; Dinoprostone; Enzyme Activation; Famotidine; Histamine; Histamine Agonists; Histamine Antagonists; Histamine H1 Antagonists; Histamine H2 Antagonists; Humans; Impromidine; Interferon-gamma; Interleukin-2; Interleukin-4; Interleukin-5; Lung; Methylhistamines; Piperidines; Pyridines; Ranitidine; T-Lymphocytes; Triprolidine | 1998 |