piperidines has been researched along with 2-(2-3-dicarboxycyclopropyl)glycine* in 5 studies
5 other study(ies) available for piperidines and 2-(2-3-dicarboxycyclopropyl)glycine
Article | Year |
---|---|
Pharmacological characterization of JNJ-40068782, a new potent, selective, and systemically active positive allosteric modulator of the mGlu2 receptor and its radioligand [3H]JNJ-40068782.
Modulation of the metabotropic glutamate type 2 (mGlu2) receptor is considered a promising target for the treatment of central nervous system diseases such as schizophrenia. Here, we describe the pharmacological properties of the novel mGlu2 receptor positive allosteric modulator (PAM) 3-cyano-1-cyclopropylmethyl-4-(4-phenyl-piperidin-1-yl)-pyridine-2(1H)-one (JNJ-40068782) and its radioligand [(3)H]JNJ-40068782. In guanosine 5'-O-(3-[(35)S]thio)triphosphate binding, JNJ-40068782 produced a leftward and upward shift in the glutamate concentration-effect curve at human recombinant mGlu2 receptors. The EC50 of JNJ-40068782 for potentiation of an EC20-equivalent concentration of glutamate was 143 nM. Although JNJ-40068782 did not affect binding of the orthosteric antagonist [(3)H]2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY-341495), it did potentiate the binding of the agonist [(3)H](2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine (DCG-IV), demonstrating that it can allosterically affect binding at the agonist recognition site. The binding of [(3)H]JNJ-40068782 to human recombinant mGlu2 receptors in Chinese hamster ovary cells and rat brain receptors was saturable with a KD of ∼10 nM. In rat brain, the anatomic distribution of [(3)H]JNJ-40068782 was consistent with mGlu2 expression previously described and was most abundant in cortex and hippocampus. The ability of structurally unrelated PAMs to displace [(3)H]JNJ-40068782 suggests that PAMs may bind to common determinants within the same site. It is noteworthy that agonists also increased the binding affinity of [(3)H]JNJ-40068782. JNJ-40068782 influenced rat sleep-wake organization by decreasing rapid eye movement sleep with a lowest active dose of 3 mg/kg PO. In mice, JNJ-40068782 reversed phencyclidine-induced hyperlocomotion with an ED50 of 5.7 mg/kg s.c. Collectively, the present data demonstrate that JNJ-40068782 has utility in investigating the potential of mGlu2 modulation for the treatment of diseases characterized by disturbed glutamatergic signaling and highlight the value of [(3)H]JNJ-40068782 in exploring allosteric binding. Topics: Amino Acids; Animals; Autoradiography; Binding, Competitive; Brain Chemistry; Calcium; Cell Membrane; Cerebral Cortex; CHO Cells; Cricetinae; Cricetulus; Cyclopropanes; Excitatory Amino Acid Agents; Excitatory Amino Acid Agonists; Glycine; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Isotope Labeling; Ligands; Male; Mice; Motor Activity; Piperidines; Pyridones; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Sleep; Tritium; Xanthenes | 2013 |
AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses: a characterization of molecular mechanisms.
A major subtype of glutamate receptors, AMPA receptors (AMPARs), are generally thought to mediate excitation at mammalian central synapses via the ionotropic action of ligand-gated channel opening. It has recently emerged, however, that synaptic activation of AMPARs by glutamate released from the climbing fibre input elicits not only postsynaptic excitation but also presynaptic inhibition of GABAergic transmission onto Purkinje cells in the cerebellar cortex. Although presynaptic inhibition is critical for information processing at central synapses, the molecular mechanisms by which AMPARs take part in such actions are not known. This study therefore aimed at further examining the properties of AMPAR-mediated presynaptic inhibition at GABAergic synapses in the rat cerebellum. Our data provide evidence that the climbing fibre-induced inhibition of GABA release from interneurons depends on AMPAR-mediated activation of GTP-binding proteins coupled with down-regulation of presynaptic voltage-dependent Ca(2+) channels. A G(i/o)-protein inhibitor, N-ethylmaleimide, selectively abolished the AMPAR-mediated presynaptic inhibition at cerebellar GABAergic synapses but did not affect AMPAR-mediated excitatory actions on Purkinje cells. Furthermore, both G(i/o)-coupled receptor agonists, baclofen and DCG-IV, and the P/Q-type calcium channel blocker omega-agatoxin IVA markedly occluded the AMPAR-mediated inhibition of GABAergic transmission. Conversely, AMPAR activation inhibited action potential-triggered Ca(2+) influx into individual axonal boutons of cerebellar GABAergic interneurons. By suppressing the inhibitory inputs to Purkinje cells, the AMPAR-mediated presynaptic inhibition could thus provide a feed-forward mechanism for the information flow from the cerebellar cortex. Topics: Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzothiadiazines; Benzoxazines; Calcium; Calcium Channel Blockers; Cerebellum; Chelating Agents; Colforsin; Cyclopropanes; Drug Interactions; Egtazic Acid; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Glycine; In Vitro Techniques; Morpholines; Naphthalenes; Neural Inhibition; Neurons; Piperidines; Presynaptic Terminals; Pyrazoles; Rats; Rats, Wistar; Receptors, AMPA; Ryanodine; Synapses; Triazines; Triazoles | 2004 |
Direct and indirect interactions between cannabinoid CB1 receptor and group II metabotropic glutamate receptor signalling in layer V pyramidal neurons from the rat prefrontal cortex.
At proximal synapses from layer V pyramidal neurons from the rat prefrontal cortex, activation of group II metabotropic glutamate receptors (group II mGlu) by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine (DCG IV) induced a long-lasting depression of excitatory postsynaptic currents. Paired-pulse experiments suggested that the depression was expressed presynaptically. Activation of type 1 cannabinoid receptors (CB1) by WIN 55,212-2 occluded the DCG IV-induced depression in a mutually occlusive manner. At the postsynaptic level, WIN 55,212-2 and DCG IV were also occlusive for the activation of extracellular signal-regulated kinase. The postsynaptic localization of active extracellular signal-regulated kinase was confirmed by immunocytochemistry after activation of CB1 receptors. However, phosphorylation of extracellular signal-regulated kinase in layer V pyramidal neurons was dependent on the activation of N-methyl-d-aspartate receptors, consequently to a release of glutamate in the local network. Group II mGlu were also shown to be involved in long-term changes in synaptic plasticity induced by high frequency stimulations. The group II mGlu antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE) favoured long-term depression. However, no interaction was found between MSOPPE, WIN 55,212-2 and the CB1 receptor antagonist SR 141716A on the modulation of long-term depression or long-term potentiation and the effects of these drugs were rather additive. We suggest that CB1 receptor and group II mGlu signalling may interact through a presynaptic mechanism in the induction of a DCG IV-induced depression. Postsynaptically, an indirect interaction occurs for activation of extracellular signal-regulated kinase. However, none of these interactions seem to play a role in synaptic plasticities induced with high frequency stimulations. Topics: Animals; Anticonvulsants; Benzoxazines; Calcium Channel Blockers; Cyclopropanes; Excitatory Postsynaptic Potentials; Glycine; Immunohistochemistry; Long-Term Potentiation; Mitogen-Activated Protein Kinases; Morpholines; Naphthalenes; Neuronal Plasticity; Organ Culture Techniques; Phosphorylation; Phosphoserine; Piperidines; Prefrontal Cortex; Pyramidal Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug; Receptors, Metabotropic Glutamate; Rimonabant; Signal Transduction | 2003 |
Effect of donepezil on group II mGlu receptor agonist- or antagonist-induced amnesia on passive avoidance in mice.
We examined the effect of the acetylcholinesterase (AChE) inhibitor, donepezil hydrocloride (DONP), on group II metabotropic glutamate (mGlu) receptor agonist- or antagonist-induced amnesia in the step-through passive avoidance task in male mice. DCG-IV, a group II mGlu receptor agonist, at dose of 50 ng and LY341495, a group II mGlu receptor antagonist, at dose of 300 ng, significantly attenuated the latency on the step-through task. The subcutaneous injection of DONP at dose of 1 mg/kg 1 hour before passive avoidance performance ameliorated the amnesia induced by DCG-IV and LY341495, whereas donepezil alone did not affect task latency. The results suggest that activation of group II mGlu receptors and disinhibition of the cAMP/PKA signaling pathway (caused by group II mGlu receptor antagonist) have a negative action on step-through passive avoidance memory performance, and that group II mGlu receptors and ACh interact to modulate learning and memory function. Topics: Amino Acids; Amnesia; Animals; Avoidance Learning; Cholinesterase Inhibitors; Cyclopropanes; Donepezil; Excitatory Amino Acid Antagonists; Glycine; Indans; Male; Memory; Mice; Nootropic Agents; Piperidines; Receptors, Metabotropic Glutamate; Xanthenes | 2003 |
Distinct NMDA receptors provide differential modes of transmission at mossy fiber-interneuron synapses.
Dentate gyrus granule cells innervate inhibitory interneurons via a continuum of synapses comprised of either Ca(2+)-impermeable (CI) or Ca(2+)-permeable (CP) AMPA receptors. Synapses at the extreme ends of this continuum engage distinct postsynaptic responses, with activity at CI synapses being strongly influenced by NMDA receptor activation. NMDARs at CI synapses have a lower NR2B subunit composition and a higher open probability, which generate larger amplitude and more rapid EPSCs than their CP counterparts. A novel form of NMDAR-dependent long-term depression (iLTD) is associated with CI-mossy fiber synapses, whereas iLTD at CP synapses is dependent on Ca(2+)-permeable AMPA receptor activation. Induction of both forms of iLTD required elevation of postsynaptic calcium. Thus mossy fibers engage CA3 interneurons via multiple synapse types that will act to expand the computational repertoire of the mossy fiber-CA3 network. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Calcium; Chlorides; Cyclopropanes; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glycine; Hippocampus; In Vitro Techniques; Interneurons; Mossy Fibers, Hippocampal; N-Methylaspartate; Patch-Clamp Techniques; Phenols; Piperidines; Polyamines; Protein Subunits; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Valine | 2002 |