piperidines has been researched along with 14-15-epoxy-5-8-11-eicosatrienoic-acid* in 3 studies
3 other study(ies) available for piperidines and 14-15-epoxy-5-8-11-eicosatrienoic-acid
Article | Year |
---|---|
EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model.
Central post-stroke pain (CPSP) is a chronic and intolerable neuropathic pain syndrome following a cerebral vascular insult, which negatively impacts the quality of life of stroke survivors but currently lacks efficacious treatments. Though its underlying mechanism remains unclear, clinical features of hyperalgesia and allodynia indicate central sensitization due to excessive neuroinflammation. Recently, the crosslink between neuroinflammation and endoplasmic reticulum (ER) stress has been identified in diverse types of diseases. Nevertheless, whether this interaction contributes to pain development remains unanswered. Epoxyeicosatrienoic acids (EETs)/soluble epoxy hydrolase inhibitors (sEHi) are emerging targets that play a significant role in pain and neuroinflammatory regulation. Moreover, recent studies have revealed that EETs are effective in attenuating ER stress. In this study, we hypothesized that ER stress around the stroke site may activate glial cells and lead to further inflammatory cascades, which constitute a positive feedback loop resulting in central sensitization and CPSP. Additionally, we tested whether EETs/sEHi could attenuate CPSP by suppressing ER stress and neuroinflammation, as well as their vicious cycle, in a rat model of CPSP.. Young male SD rats were used to induce CPSP using a model of thalamic hemorrhage and were then treated with TPPU (sEHi) alone or in combination with 14,15-EET or 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, the EET antagonist), tunicamycin (Tm, ER stress inducer), or 4-PBA (ER stress inhibitor). Nociceptive behaviors, ER stress markers, JNK and p38 (two well-recognized inflammatory kinases of mitogen-activated protein kinase (MAPK) signaling) expression, and glial cell activation were assessed. In addition, some healthy rats were intrathalamically microinjected with Tm or lipopolysaccharide (LPS) to test the interaction between ER stress and neuroinflammation in central pain.. Analysis of the perithalamic lesion tissue from the brain of CPSP rats demonstrated decreased soluble epoxy hydrolase (sEH) expression, which was accompanied by increased expression of ER stress markers, including BIP, p-IRE, p-PERK, and ATF6. In addition, inflammatory kinases (p-p38 and p-JNK) were upregulated and glial cells were activated. Intrathalamic injection of sEHi (TPPU) increased the paw withdrawal mechanical threshold (PWMT), reduced hallmarks of ER stress and MAPK signaling, and restrained the activation of microglia and astrocytes around the lesion site. However, the analgesic effect of TPPU was completely abolished by 14,15-EEZE. Moreover, microinjection of Tm into the thalamic ventral posterior lateral (VPL) nucleus of healthy rats induced mechanical allodynia and activated MAPK-mediated neuroinflammatory signaling; lipopolysaccharide (LPS) administration led to activation of ER stress along the injected site in healthy rats.. The present study provides evidence that the interaction between ER stress and neuroinflammation is involved in the mechanism of CPSP. Combined with the previously reported EET/sEHi effects on antinociception and neuroprotection, therapy with agents that target EET signaling may serve as a multi-functional approach in central neuropathic pain by attenuating ER stress, excessive neuroinflammation, and subsequent central sensitization. The use of these agents within a proper time window could not only curtail further nerve injury but also produce an analgesic effect. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Endoplasmic Reticulum Stress; Epoxide Hydrolases; Male; Neuralgia; Neuroinflammatory Diseases; Nociception; Phenylurea Compounds; Piperidines; Rats; Rats, Sprague-Dawley; Stroke; Vasodilator Agents | 2021 |
Epoxyeicosatrienoic acids improve glucose homeostasis by preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells.
Studies have shown that epoxyeicosatrienoic acids (EETs) can regulate glucose homeostasis, but the specific mechanisms need further exploration. The sodium-glucose co-transporter 2 (SGLT2) is highly expressed in diabetic kidneys, which further promotes renal reabsorption of glucose to respond to the hyperglycemic state of diabetes. Herein, whether EETs can be a latent inhibitor of SGLT2 to regulate glucose homeostasis in diabetic state needs to be elucidated. Our study demonstrated that EETs attenuated the glucose reabsorption via renal tubular epithelial cells in diabetic mice, which partly accounted for the beneficial effects of EETs on glucose homeostasis. Moreover, 14,15-EET suppressed SGLT2 expression in both diabetic kidney and renal tubular epithelial cells. Further, inhibition of NF-κB with BAY 11-7082 decreased insulin-induced SGLT2 expression while NF-κB overexpression reversed the above effects. In addition, 14,15-EET attenuated SGLT2 expression via inactivating NF-κB. Mechanistically, 14,15-EET attenuated NF-κB mediated SGLT2 transcription at the -1821/-1812 P65-binding site. These results showed that EETs ameliorated glucose homeostasis via preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells, providing a unique therapeutic strategy for insulin resistance and diabetes. Topics: 8,11,14-Eicosatrienoic Acid; Animals; Cell Line; Diabetes Mellitus, Experimental; Epithelial Cells; Glucose; Homeostasis; Humans; Insulin; Kidney Tubules, Proximal; Mice, Inbred C57BL; NF-kappa B; Phenylurea Compounds; Piperidines; Sodium-Glucose Transporter 2; Transcription, Genetic | 2021 |
Block of erg current by linoleoylamide, a sleep-inducing agent, in pituitary GH3 cells.
Linoleoylamide is physiological constituent of neurons. The effects of this agent, also a sleep-inducing agent, on ion currents in pituitary GH(3) cells were investigated. Hyperpolarization-elicited K(+) currents in GH(3) cells bathed in a high-K(+), Ca(2+)-free solution were studied to determine the effects of linoleoylamide and other related compounds on the I(K(IR)) that was sensitive to inhibition by E-4031 and identified as an erg (ether-à-go-go-related-gene) current. Linoleoylamide suppressed the amplitude of I(K(IR)) in a concentration-dependent manner with an IC(50) value of 5 microM. Oleamide (20 microM) inhibited the amplitude of I(K(IR)), while neither arachidonic acid (20 microM) nor 14,15-epoxyeicosatrienoic acid (20 microM) had an effect on it. In GH(3) cells incubated with anandamide (20 microM) or arachidonic acid (20 microM), the linoleoylamide-induced inhibition of I(K(IR)) remained unaltered. In inside-out patches, arachidonic acid (20 microM) and 14,15-epoxyeicosatrienoic acid (20 microM) stimulated large-conductance Ca(2+)-activated K(+) channels; however, linoleoylamide (20 microM) had little or no effect on them. Under current-clamp mode, linoleoylamide (20 microM) increased the firing rate. In IMR-32 neuroblastoma cells, linoleoylamide also suppressed I(K(IR)). This study provides the evidence that linoleoylamide has a depressant effect on the erg current, and suggests that this effect may affect hormonal secretion. Topics: 8,11,14-Eicosatrienoic Acid; alpha-Linolenic Acid; Amides; Animals; Arachidonic Acid; Arachidonic Acids; Calcium; Calcium Channels, L-Type; Dose-Response Relationship, Drug; Endocannabinoids; Humans; Hydantoins; Imidazoles; Imidazolidines; Infant, Newborn; Linoleic Acids; Membrane Potentials; Neuroblastoma; Patch-Clamp Techniques; Piperazines; Piperidines; Pituitary Neoplasms; Polyunsaturated Alkamides; Potassium Channels; Pyridines; Tumor Cells, Cultured | 2003 |