piperidines and 11-12-epoxy-5-8-14-eicosatrienoic-acid

piperidines has been researched along with 11-12-epoxy-5-8-14-eicosatrienoic-acid* in 1 studies

Other Studies

1 other study(ies) available for piperidines and 11-12-epoxy-5-8-14-eicosatrienoic-acid

ArticleYear
TPPU enhanced exercise-induced epoxyeicosatrienoic acid concentrations to exert cardioprotection in mice after myocardial infarction.
    Journal of cellular and molecular medicine, 2018, Volume: 22, Issue:3

    Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise-induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET) levels, for 1 week before undergoing MI surgery. After 1-week recovery, the mice followed a prescribed exercise programme. Bone marrow-derived endothelial progenitor cells (EPCs) were isolated from the mice after 4 weeks of exercise and cultured for 7 days. Angiogenesis around the ischaemic area, EPC functions, and the expression of microRNA-126 (miR-126) and its target gene Spred1 were measured. The results were confirmed in vitro by adding TPPU to EPC culture medium. ET significantly increased serum EET levels and promoted angiogenesis after MI. TPPU enhanced the effects of ET to reduce the infarct area and improve cardiac function after MI. ET increased EPC function and miR-126 expression, which were further enhanced by TPPU, while Spred1 expression was significantly down-regulated. Additionally, the protein kinase B/glycogen synthase kinase 3β (AKT/GSK3β) signalling pathway was activated after the administration of TPPU. EETs are a potential mediator of exercise-induced cardioprotection in mice after MI. TPPU enhances exercise-induced cardiac recovery in mice after MI by increasing EET levels and promoting angiogenesis around the ischaemic area.

    Topics: 8,11,14-Eicosatrienoic Acid; Adaptor Proteins, Signal Transducing; Animals; Bone Marrow Cells; Cardiotonic Agents; Coronary Vessels; Disease Models, Animal; Endothelial Progenitor Cells; Enzyme Inhibitors; Epoxide Hydrolases; Gene Expression Regulation; Glycogen Synthase Kinase 3 beta; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Myocardial Infarction; Neovascularization, Physiologic; Phenylurea Compounds; Physical Conditioning, Animal; Piperidines; Primary Cell Culture; Proto-Oncogene Proteins c-akt; Repressor Proteins; Signal Transduction

2018