piperidines has been researched along with 1-(3-chlorophenyl)biguanide* in 3 studies
3 other study(ies) available for piperidines and 1-(3-chlorophenyl)biguanide
Article | Year |
---|---|
Involvement of the serotonergic system of the ventral hippocampus (CA3) on amnesia induced by ACPA in mice.
Interactions between the cannabinoid and serotonin systems have been reported in many studies. In the present study, we investigated the influence of the serotonergic receptor agents on amnesia induced by the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA). Bilateral guide-cannulae were implanted to allow intra-CA3 microinjection of the drugs. The results showed that the intra-peritoneal (i.p.) injection of ACPA induce amnesia but did not alter head dip latency, head dip counts, and locomotion. Moreover, intra-CA3 injection of M-Chlorophenylbiguanide (M-CHL, a 5-HT3 serotonin receptor agonist), Y-25130 (a 5-HT3 serotonin receptor antagonist), RS67333 (a 5-HT4 serotonin receptor agonist), and RS23597-190 (a 5-HT4 serotonin receptor antagonist) impaired memory but have no effect on head dip latency and locomotor activity. In addition, intra-CA3 injection of Y-25130, RS67333, and RS23597-190 heighten the ACPA-induced amnesia and head dip counts while did not alter head dip latency and locomotor activity. On the other hand, intra-CA3 microinjection of M-CHL could not modify the ACPA-induced amnesia, head dip latency and locomotor activity whereas increased head dip counts. It can be concluded that the amnesia induced by i.p. administration of ACPA is at least partly mediated through the serotonergic receptor mechanism in the CA3 area. Topics: Amnesia; Aniline Compounds; Animals; Arachidonic Acids; Biguanides; Bridged Bicyclo Compounds, Heterocyclic; CA3 Region, Hippocampal; Cannabinoid Receptor Agonists; Catheters, Indwelling; Male; Mice; Oxazines; para-Aminobenzoates; Piperidines; Receptor, Cannabinoid, CB1; Receptors, Serotonin, 5-HT3; Receptors, Serotonin, 5-HT4; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists | 2015 |
Pharmacology of serotonin receptors modulating electrically-induced [3h]-norepinephrine release from isolated mammalian iris-ciliary bodies.
The pharmacology of prejunctional serotonin (5-HT) heteroreceptors that regulate the release of norepinephrine (NE) was studied in isolated bovine and human iris-ciliary bodies. The effect of exogenous 5-HT and various 5-HT receptor agonists was examined on the release of [3H]-norepinephrine ([3H]NE). Both 5-HT and m-chlorophenyl-biguanide (m-CPBG) caused enhancement in the field-stimulated release of [3H]NE from bovine tissues whereas 5-carboxamidotryptamine (5-CT) had no such effect. On the other hand, 8hydroxy-dipropylaminotetralin (8-OH-DPAT), caused a significant dose-related inhibition of evoked [3H]NE release. In human iris-ciliary bodies, 5-HT caused an inhibitory response on electrically-evoked [3H]NE release at low concentrations but produced an excitatory action at concentrations greater than 3 microM. To further confirm the nature of the prejunctional 5-HT heteroreceptors regulating [3H]NE release, effects of 5-HT3, 5-HT6 and 5-HT7 receptor antagonists were examined on a standard response to 5-HT. All antagonists examined caused a concentration-dependent inhibition of the response elicited by the standard 5-HT-induced response with the following rank order of potency (as measured by IC30 values): MDL-72222 >> SB-258719 > RO-04-690. We conclude that the excitatory prejunctional 5-HT heteroreceptors present in bovine iris-ciliary bodies belong to the 5-HT3 receptor subtype. Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Biguanides; Cattle; Ciliary Body; Dose-Response Relationship, Drug; Electric Stimulation; Humans; In Vitro Techniques; Iris; Norepinephrine; Piperidines; Receptors, Serotonin; Receptors, Serotonin, 5-HT3; Serotonin; Serotonin Antagonists; Serotonin Receptor Agonists; Sulfonamides; Tritium; Tropanes | 2002 |
Endogenous cannabinoid, anandamide, acts as a noncompetitive inhibitor on 5-HT3 receptor-mediated responses in Xenopus oocytes.
The cloned 5-HT3 receptor from NCB-20 neuroblastoma cells was expressed in Xenopus oocytes and the effect of the endogenous cannabinoid ligand, anandamide, was investigated on the function of this receptor. The oocytes expressing the cloned 5-HT3 receptors were voltage-clamped at -70 mV. Anandamide, at the concentration range of 0.1-100 microM, reversibly inhibited 1 microM 5-HT induced currents. The inhibition of 5-HT induced currents by anandamide was concentration-dependent with an EC50 of 3.7 microM and slope value of 0.94. This inhibitory effect was not dependent on the membrane potential and anandamide did not have an effect on the reversal potential of 5-HT-induced currents. In the presence of 10 microM anandamide, the maximum 5-HT-induced response was also inhibited and the respective EC50 values were 3.4 microM and 3.1 microM in the absence and presence of anandamide, indicating that anandamide acts as a noncompetitive antagonist on 5-HT3 receptors. CB1 receptor antagonist SR-141716A (1 microM) and pertussis toxin (5 microg/ml) did not cause a significant change on the inhibition of 5-HT responses by anandamide. The effect of anandamide was not changed by preincubating the oocytes with 0.2 mM 8-Br-cAMP, a membrane-permeable analog of cAMP, or Sp-cAMPS (0.1 mM), a membrane-permeable protein kinase A activator. These results suggest that the effect of anandamide is independent of the activation of cAMP pathway and not mediated by the activation of PTX sensitive G-proteins. In conclusion, we demonstrated that the endogenous cannabinoid anandamide inhibits the function of 5-HT3 receptors expressed in Xenopus oocytes in a cannabinoid-receptor independent and noncompetitive manner. Topics: 8-Bromo Cyclic Adenosine Monophosphate; Analysis of Variance; Animals; Arachidonic Acids; Biguanides; Cannabinoids; Chelating Agents; Cyclic AMP; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electrophysiology; Endocannabinoids; Enzyme Inhibitors; Female; Indazoles; Membrane Potentials; Oocytes; Pertussis Toxin; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Serotonin, 5-HT3; Rimonabant; RNA, Complementary; Serotonin; Serotonin 5-HT3 Receptor Antagonists; Serotonin Receptor Agonists; Thionucleotides; Tropanes; Xenopus laevis | 2002 |