piperacillin--tazobactam-drug-combination has been researched along with avibactam* in 2 studies
2 other study(ies) available for piperacillin--tazobactam-drug-combination and avibactam
Article | Year |
---|---|
Incidence of ESBLs and carbapenemases among Enterobacterales and carbapenemases in Pseudomonas aeruginosa isolates collected globally: results from ATLAS 2017-2019.
To assess the global and regional distribution of ESBLs in Enterobacterales and carbapenemases in Enterobacterales and Pseudomonas aeruginosa.. Antimicrobial susceptibility of isolates collected from ATLAS (2017-2019) was determined per CLSI guidelines. Enterobacterales exhibiting meropenem MICs ≥2 mg/L and/or ceftazidime/avibactam and/or aztreonam/avibactam MICs ≥16 mg/L, Escherichia coli and Klebsiella pneumoniae with aztreonam and/or ceftazidime MICs ≥2 mg/L, and P. aeruginosa with meropenem MICs ≥4 mg/L were screened for β-lactamases by PCR and sequencing.. Globally, ESBL-positive E. coli (23.7%, 4750/20047) and K. pneumoniae (35.1%, 6055/17229) carried predominantly the CTX-M-15 variant (E. coli: 53.9%; K. pneumoniae: 80.0%) with highest incidence in Africa/Middle East (AfME). Among carbapenem-resistant (CR) E. coli (1.1%, 217/20047) and Enterobacter cloacae (3.8%, 259/6866), NDMs were predominant (E. coli in AfME: 62.5%; E. cloacae in Asia Pacific: 59.7%). CR K. pneumoniae (13.3%, 2299/17 229) and P. aeruginosa (20.3%, 4187/20 643) carried predominantly KPC (30.9%) and VIM (14.7%), respectively, with highest frequency in Latin America. Among ESBL-positive Enterobacterales, susceptibility to ceftazidime/avibactam (>90.0%) and amikacin (>85.0%) was higher than to piperacillin/tazobactam (>45.0%) and ciprofloxacin (>7.4%). In CR Enterobacterales, susceptibility to amikacin (>54.0%) and ceftazidime/avibactam (>31.0%) was higher than to ciprofloxacin (>2.7%) and piperacillin/tazobactam (>0.5%). CR P. aeruginosa similarly demonstrated higher susceptibility to amikacin (63.4%) and ceftazidime/avibactam (61.9%) than to ciprofloxacin (26.2%) and piperacillin/tazobactam (25.3%).. Varied distribution of resistance genotypes across regions among ESBL-positive Enterobacterales and CR Enterobacterales and P. aeruginosa provide crucial insights on major resistance mechanisms and trends observed in recent years. Continued surveillance is warranted for monitoring global dissemination and resistance. Topics: Amikacin; Anti-Bacterial Agents; Azabicyclo Compounds; Aztreonam; beta-Lactamases; Ceftazidime; Ciprofloxacin; Drug Combinations; Escherichia coli; Incidence; Klebsiella pneumoniae; Meropenem; Microbial Sensitivity Tests; Piperacillin, Tazobactam Drug Combination; Pseudomonas aeruginosa | 2023 |
Potentiation of ceftazidime by avibactam against β-lactam-resistant Pseudomonas aeruginosa in an in vitro infection model.
This study evaluated the in vitro pharmacodynamics of combinations of ceftazidime and the non-β-lactam β-lactamase inhibitor, avibactam, against ceftazidime-, piperacillin/tazobactam- and meropenem-multiresistant Pseudomonas aeruginosa by a quantitative time-kill method.. MICs of ceftazidime plus 0-16 mg/L avibactam were determined against eight isolates of P. aeruginosa . Single-compartment, 24 h time-kill kinetics were investigated for three isolates at 0-16 mg/L avibactam with ceftazidime at 0.25-4-fold the MIC as measured at the respective avibactam concentration. Ceftazidime and avibactam concentrations were measured by LC-MS/MS during the time-kill kinetic studies to evaluate drug degradation.. Avibactam alone displayed no antimicrobial activity. MICs of ceftazidime decreased by 8-16-fold in the presence of avibactam at 4 mg/L. The changes in log 10 cfu/mL at both the 10 h and 24 h timepoints (versus 0 h) revealed bacterial killing at ≥1-fold MIC. Significantly higher concentrations of ceftazidime alone, as compared with those of ceftazidime in combination, were required to produce any given kill. Without avibactam, ceftazidime degradation was significant (defined as degradation t 1/2 < 24 h), with as little as 19% ± 18% of the original concentration remaining at 8 h for the most resistant strain. In combination with avibactam, ceftazidime degradation at ≥ 1-fold MIC was negligible.. The addition of avibactam protected ceftazidime from degradation in a dose-dependent manner and restored its cidal and static activity at concentrations in combination well below the MIC of ceftazidime alone. Topics: Anti-Bacterial Agents; Azabicyclo Compounds; beta-Lactam Resistance; beta-Lactamase Inhibitors; Ceftazidime; Drug Synergism; Kinetics; Meropenem; Microbial Sensitivity Tests; Penicillanic Acid; Piperacillin; Piperacillin, Tazobactam Drug Combination; Pseudomonas aeruginosa; Tandem Mass Spectrometry; Thienamycins | 2017 |