Page last updated: 2024-08-16

pioglitazone and naloxone

pioglitazone has been researched along with naloxone in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's7 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Aminian, A; Dehpour, AR; Ejtemaeimehr, S; Javadi, S; Keyvanfar, HR; Mani, AR; Moghaddas, P; Rajabzadeh, A1
Azarfardian, A; Charkhpour, M; Ghanbarzadeh, S; Ghavimi, H; Hassanzadeh, K; Maleki-Dizaji, N1
Azarfardian, A; Charkhpour, M; Ghasami, S; Ghavimi, H; Hassanzadeh, K; Maleki-Dizaji, N; Zolali, E1

Reviews

1 review(s) available for pioglitazone and naloxone

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

6 other study(ies) available for pioglitazone and naloxone

ArticleYear
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Pioglitazone potentiates development of morphine-dependence in mice: possible role of NO/cGMP pathway.
    Brain research, 2013, May-13, Volume: 1510

    Topics: Animals; Cell Line, Tumor; Cyclic AMP; Cyclic GMP; Disease Models, Animal; Enzyme Inhibitors; Glioblastoma; Hippocampus; Humans; Hypoglycemic Agents; Male; Mice; Morphine Dependence; Naloxone; Narcotic Antagonists; Nitric Oxide; Nitric Oxide Synthase; Pioglitazone; PPAR gamma; RNA, Messenger; Signal Transduction; Substance Withdrawal Syndrome; Thiazolidinediones; Transfection

2013
Acute administration of pioglitazone attenuates morphine withdrawal syndrome in rat: a novel role of pioglitazone.
    Drug research, 2015, Volume: 65, Issue:3

    Topics: Analgesics, Opioid; Anilides; Animals; Male; Morphine; Morphine Dependence; Naloxone; Pioglitazone; PPAR gamma; Rats; Rats, Wistar; Substance Withdrawal Syndrome; Thiazolidinediones

2015
Pioglitazone prevents morphine antinociception tolerance and withdrawal symptoms in rats.
    Naunyn-Schmiedeberg's archives of pharmacology, 2014, Volume: 387, Issue:9

    Topics: Analgesics, Opioid; Anilides; Animals; Behavior, Animal; Drug Tolerance; Male; Morphine; Motor Activity; Naloxone; Narcotic Antagonists; Pain; Pioglitazone; PPAR gamma; Rats, Wistar; Substance Withdrawal Syndrome; Thiazolidinediones

2014