pioglitazone has been researched along with naloxone in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 7 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Aminian, A; Dehpour, AR; Ejtemaeimehr, S; Javadi, S; Keyvanfar, HR; Mani, AR; Moghaddas, P; Rajabzadeh, A | 1 |
Azarfardian, A; Charkhpour, M; Ghanbarzadeh, S; Ghavimi, H; Hassanzadeh, K; Maleki-Dizaji, N | 1 |
Azarfardian, A; Charkhpour, M; Ghasami, S; Ghavimi, H; Hassanzadeh, K; Maleki-Dizaji, N; Zolali, E | 1 |
1 review(s) available for pioglitazone and naloxone
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
6 other study(ies) available for pioglitazone and naloxone
Article | Year |
---|---|
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Pioglitazone potentiates development of morphine-dependence in mice: possible role of NO/cGMP pathway.
Topics: Animals; Cell Line, Tumor; Cyclic AMP; Cyclic GMP; Disease Models, Animal; Enzyme Inhibitors; Glioblastoma; Hippocampus; Humans; Hypoglycemic Agents; Male; Mice; Morphine Dependence; Naloxone; Narcotic Antagonists; Nitric Oxide; Nitric Oxide Synthase; Pioglitazone; PPAR gamma; RNA, Messenger; Signal Transduction; Substance Withdrawal Syndrome; Thiazolidinediones; Transfection | 2013 |
Acute administration of pioglitazone attenuates morphine withdrawal syndrome in rat: a novel role of pioglitazone.
Topics: Analgesics, Opioid; Anilides; Animals; Male; Morphine; Morphine Dependence; Naloxone; Pioglitazone; PPAR gamma; Rats; Rats, Wistar; Substance Withdrawal Syndrome; Thiazolidinediones | 2015 |
Pioglitazone prevents morphine antinociception tolerance and withdrawal symptoms in rats.
Topics: Analgesics, Opioid; Anilides; Animals; Behavior, Animal; Drug Tolerance; Male; Morphine; Motor Activity; Naloxone; Narcotic Antagonists; Pain; Pioglitazone; PPAR gamma; Rats, Wistar; Substance Withdrawal Syndrome; Thiazolidinediones | 2014 |