pinosylvin and taxifolin

pinosylvin has been researched along with taxifolin* in 2 studies

Other Studies

2 other study(ies) available for pinosylvin and taxifolin

ArticleYear
Influence of Natural Polyphenols on Isolated Yeast Dipodascus magnusii Mitochondria.
    Doklady. Biochemistry and biophysics, 2020, Volume: 490, Issue:1

    The effect of stilbene polyphenols (resveratrol and pinosilvin) and flavonoids (dihydromyricetin, epigallocatechin, and dihydroquercetin) on producing the reactive oxygen species (ROS) due to cell respiration using the isolated mitochondria of the fungus Dipodascus (Endomyces) magnusii was studied. It was shown that the inhibition of the ROS generation with stilbenes is related to both the oxygen consumption inhibition and their antioxidant properties. The degree of manifestation of polyphenol antioxidant properties depended on the number of hydroxyl groups in a polyphenol molecule. Of the flavonoids tested, dihydromyricetin was most active in reducing the ROS generation, but its inhibitory effect on oxygen consumption by mitochondria was significantly lower as compared to that of the stilbenes. The data obtained show that the mechanism of reducing the ROS generation with polyphenols is associated with both the respiratory inhibition and their antioxidant properties.

    Topics: Antioxidants; Catechin; Flavonoids; Flavonols; Microbial Sensitivity Tests; Mitochondria; Oxygen Consumption; Polyphenols; Quercetin; Reactive Oxygen Species; Resveratrol; Saccharomycetales; Stilbenes

2020
Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea.
    Tree physiology, 2013, Volume: 33, Issue:8

    The molecular basis of the systemic induced resistance (SIR) phenotype known to occur in Austrian pine (Pinus nigra J.F. Arnold) in response to the tip blight and canker pathogen Diplodia pinea (Desm.) remains unclear. Specialized metabolites such as phenolics are considered to be an important component of plant defense, including SIR, but the antimicrobial activity of many of these putative defensive chemicals remains untested at realistic concentrations and in conjunction with each other. Here, we examined the anti-Diplodia activity of several previously identified Austrian pine phenolics associated with SIR by comparing the diameters of fungal colonies grown on media amended with ferulic acid, coumaric acid, taxifolin, pinosylvin, pinosylvin monomethyl ether and lignin. All of the compounds were tested both individually and as clusters (combinations) previously determined to occur in planta in a co-regulated fashion. Both the individual compounds and clusters were tested at constitutive concentrations and pathogen-induced concentrations linked to an SIR phenotype. Lignin possessed the strongest antifungal activity individually, and clusters at the SIR concentrations had the greatest antifungal effects, achieving fungistasis. This study exemplifies the value of evaluating potential biomarkers of resistance at in planta concentrations that are associated with the systemically resistant phenotype, and provides strong evidence that co-regulation of chemical defenses potentiates such a phenotype.

    Topics: Antifungal Agents; Ascomycota; Coumaric Acids; Lignin; Phenols; Phenotype; Pinus; Plant Diseases; Plant Immunity; Quercetin; Stilbenes

2013