pinostilbene has been researched along with 3-3--4-5--tetrahydroxystilbene* in 3 studies
3 other study(ies) available for pinostilbene and 3-3--4-5--tetrahydroxystilbene
Article | Year |
---|---|
Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids.
Stilbenoids represent a large group of bioactive compounds, which occur in food and medicinal plants. Twenty-five stilbenoids were screened in vitro for their ability to inhibit COX-1, COX-2 and 5-LOX. Piceatannol and pinostilbene showed activity comparable to the zileuton and ibuprofen, respectively. The anti-inflammatory potential of stilbenoids was further evaluated using THP-1 human monocytic leukemia cell line. Tests of the cytotoxicity on the THP-1 and HCT116 cell lines showed very low toxic effects. The tested stilbenoids were evaluated for their ability to attenuate the LPS-stimulated activation of NF-κB/AP-1. Most of the tested substances reduced the activity of NF-κB/AP-1 and later attenuated the expression of TNF-α. The effects of selected stilbenoids were further investigated on inflammatory signaling pathways. Non-prenylated stilbenoids regulated attenuation of NF-ĸB/AP-1 activity upstream by inhibiting the phosphorylation of MAPKs. A docking study used to in silico analyze the tested compounds confirmed their interaction with NF-ĸB, COX-2 and 5-LOX. Topics: Anti-Inflammatory Agents, Non-Steroidal; Cyclooxygenase 2 Inhibitors; Drug Evaluation, Preclinical; HCT116 Cells; Humans; Lipopolysaccharides; Lipoxygenase Inhibitors; Macrophages; Molecular Docking Simulation; NF-kappa B; Prenylation; Signal Transduction; Stilbenes; Transcription Factor AP-1; Tumor Necrosis Factor-alpha | 2019 |
Metabolism of Stilbenoids by Human Faecal Microbiota.
Stilbenoids are dietary phenolics with notable biological effects on humans. Epidemiological, clinical, and nutritional studies from recent years have confirmed the significant biological effects of stilbenoids, such as oxidative stress protection and the prevention of degenerative diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. Stilbenoids are intensively metabolically transformed by colon microbiota, and their corresponding metabolites might show different or stronger biological activity than their parent molecules. The aim of the present study was to determine the metabolism of six stilbenoids (resveratrol, oxyresveratrol, piceatannol, thunalbene, batatasin III, and pinostilbene), mediated by colon microbiota. Stilbenoids were fermented in an in vitro faecal fermentation system using fresh faeces from five different donors as an inoculum. The samples of metabolized stilbenoids were collected at 0, 2, 4, 8, 24, and 48 h. Significant differences in the microbial transformation among stilbene derivatives were observed by liquid chromatography mass spectrometry (LC/MS). Four stilbenoids (resveratrol, oxyresveratrol, piceatannol and thunalbene) were metabolically transformed by double bond reduction, dihydroxylation, and demethylation, while batatasin III and pinostilbene were stable under conditions simulating the colon environment. Strong inter-individual differences in speed, intensity, and pathways of metabolism were observed among the faecal samples obtained from the donors. Topics: Chromatography, Liquid; Colon; Feces; Fermentation; Humans; Mass Spectrometry; Microbiota; Phenols; Resveratrol; Stilbenes; Tandem Mass Spectrometry | 2019 |
Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5.
The flavin-dependent monooxygenase Sam5 was previously reported to be a bifunctional hydroxylase with a coumarte 3-hydroxylase and a resveratrol 3'-hydroxylase activity. In this article, we showed the Sam5 enzyme has 3'-hydroxylation activities for methylated resveratrol (pinostilbene and pterostilbene), hydroxylated resveratrol (oxyresveratrol) and glycosylated resveratrol (piceid) as substrates. However, the use of piceid, a glycone type stilbene, as a substrate for bioconversion experiments with the Sam5 enzyme expressed in, Topics: Dinitrocresols; Escherichia coli; Flavins; Glucosides; Hydroxylation; Mixed Function Oxygenases; Plant Extracts; Resveratrol; Stilbenes | 2018 |