pinocembrin has been researched along with eriodictyol in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (20.00) | 18.2507 |
2000's | 2 (20.00) | 29.6817 |
2010's | 5 (50.00) | 24.3611 |
2020's | 1 (10.00) | 2.80 |
Authors | Studies |
---|---|
Baird, WM; Cassady, JM; Cook, VM; Ho, DK; Liu, YL | 1 |
Habtemariam, S | 2 |
Jeong, KW; Kang, DI; Kim, Y; Lee, JU; Lee, JY; Shin, SY | 1 |
Lee, S; Lee, YH; Lim, Y; Shin, SY; Woo, Y | 1 |
Itoh, T; Sakakibara, H; Shimoi, K; Takemura, H; Yamamoto, K | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM | 1 |
Erdoğan, Ş; Özbakır Işın, D | 1 |
Kang, Y; Kim, BG; Kim, S; Lee, Y; Yoon, Y | 1 |
1 review(s) available for pinocembrin and eriodictyol
Article | Year |
---|---|
The Nrf2/HO-1 Axis as Targets for Flavanones: Neuroprotection by Pinocembrin, Naringenin, and Eriodictyol.
Topics: Animals; Disease Models, Animal; Flavanones; NF-E2-Related Factor 2; Rats; Reactive Oxygen Species | 2019 |
9 other study(ies) available for pinocembrin and eriodictyol
Article | Year |
---|---|
Isolation of potential cancer chemopreventive agents from Eriodictyon californicum.
Topics: Animals; Anticarcinogenic Agents; Benzo(a)pyrene; Cells, Cultured; Cricetinae; Depression, Chemical; DNA, Neoplasm; Female; Flavonoids; Plants, Medicinal; Pregnancy | 1992 |
Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells.
Topics: Animals; Apoptosis; Drug Synergism; Flavonoids; Mice; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 1997 |
Screening of flavonoids as candidate antibiotics against Enterococcus faecalis.
Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase; Algorithms; Anti-Bacterial Agents; Arginine; Enterococcus faecalis; Escherichia coli; Flavanones; Microbial Sensitivity Tests; Phenylalanine; Quercetin; Structure-Activity Relationship; Vancomycin Resistance | 2009 |
Relationships between the structures of flavanone derivatives and their effects in enhancing early growth response-1 gene expression.
Topics: Early Growth Response Protein 1; Flavanones; Gene Expression Regulation; HeLa Cells; Humans; Quantitative Structure-Activity Relationship | 2009 |
Selective inhibition of methoxyflavonoids on human CYP1B1 activity.
Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Flavonoids; Humans; Models, Molecular; Structure-Activity Relationship | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship | 2015 |
A DFT study on OH radical scavenging activities of eriodictyol, Isosakuranetin and pinocembrin.
Topics: Antioxidants; Flavonoids; Free Radical Scavengers; Humans; Hydrogen; Protons; Thermodynamics | 2022 |
Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain.
Topics: 3-Phosphoinositide-Dependent Protein Kinases; Binding Sites; Flavones; Flavonoids; Flavonols; Liposomes; Molecular Docking Simulation; Phosphatidylinositol Phosphates; Pleckstrin Homology Domains; Protein Binding; Quantitative Structure-Activity Relationship | 2017 |