pinacidil has been researched along with quinoxalines in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (71.43) | 29.6817 |
2010's | 2 (28.57) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Chen, SJ; Lin, CI; Wu, CC; Yang, SN; Yen, MH | 1 |
Cheng, JT; Huang, WC; Lai, TY; Liu, IM; Tsai, CC | 1 |
Di Girolamo, N; Heywood, GJ; Thomas, PS; Wei, XM | 1 |
Flores-Murrieta, FJ; Granados-Soto, V; Mixcoatl-Zecuatl, T | 1 |
Freiman, TM; Heinemeyer, J; Klar, M; Kukolja, J; Surges, R; van Velthoven, V; Zentner, J | 1 |
Balfagón, G; Blanco-Rivero, J; Cogolludo, A; del Campo, L; Márquez-Rodas, I; Nava, MP; Pérez-Vizcaíno, F; Sastre, E | 1 |
Adachi, T; Fujisawa, S; Hongoh, M; Ohba, T; Ono, K; Shimbo, T | 1 |
7 other study(ies) available for pinacidil and quinoxalines
Article | Year |
---|---|
Abnormal activation of K(+) channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence.
Topics: Animals; Aorta; Apamin; Benzimidazoles; Charybdotoxin; Drug Interactions; Enzyme Inhibitors; Glyburide; Hypoglycemic Agents; Hypotension; Lipopolysaccharides; Male; Membrane Potentials; Muscle Relaxation; Muscle, Smooth, Vascular; NG-Nitroarginine Methyl Ester; Oxadiazoles; Pinacidil; Potassium Channels; Quinoxalines; Rats; Rats, Inbred WKY; Shock, Septic; Tetraethylammonium; Vasodilation; Vasodilator Agents | 2000 |
Inhibitory effects of potassium channel blockers on tetramethylpyrazine-induced relaxation of rat aortic strip in vitro.
Topics: Animals; Aorta; Apamin; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Endothelium, Vascular; Enzyme Inhibitors; Glyburide; Humans; In Vitro Techniques; Male; Oxadiazoles; Pinacidil; Potassium Channel Blockers; Potassium Channels; Pyrazines; Quinoxalines; Rats; Rats, Wistar; Vasoconstriction; Vasodilation; Vasodilator Agents | 2002 |
Nicorandil inhibits the release of TNFalpha from a lymphocyte cell line and peripheral blood lymphocytes.
Topics: B-Lymphocytes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glyburide; Herpesvirus 4, Human; Humans; Immunoglobulin G; Leukocytes, Mononuclear; Niacinamide; Nicorandil; Nitric Oxide Synthase; Nitroprusside; omega-N-Methylarginine; Oxadiazoles; Pinacidil; Potassium Channels; Quinoxalines; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha | 2003 |
The nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway participates in the antiallodynic effect of spinal gabapentin.
Topics: Amines; Analgesics; Animals; Apamin; Carbazoles; Charybdotoxin; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Cyclohexanecarboxylic Acids; Diazoxide; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Gabapentin; gamma-Aminobutyric Acid; Glyburide; Indazoles; Indoles; Injections, Spinal; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Okadaic Acid; Oxadiazoles; Pain; Pinacidil; Potassium Channel Blockers; Potassium Channels; Protein Kinase Inhibitors; Quinoxalines; Rats; Rats, Wistar; Signal Transduction; Spinal Nerves; Stereoisomerism; Time Factors; Vasodilator Agents | 2006 |
K(+)-evoked [(3)H]-norepinephrine release in human brain slices from epileptic and non-epileptic patients is differentially modulated by gabapentin and pinacidil.
Topics: Adrenergic alpha-Agonists; Adult; Aged; Amines; Anticonvulsants; Brimonidine Tartrate; Calcium Channel Blockers; Child; Cyclohexanecarboxylic Acids; Epilepsy; Female; Gabapentin; gamma-Aminobutyric Acid; Hippocampus; Humans; Idazoxan; In Vitro Techniques; Male; Middle Aged; Norepinephrine; omega-Conotoxins; Pinacidil; Potassium; Quinoxalines; Time Factors; Tritium | 2006 |
Cirrhosis decreases vasoconstrictor response to electrical field stimulation in rat mesenteric artery: role of calcitonin gene-related peptide.
Topics: Animals; ATP-Binding Cassette Transporters; Calcitonin Gene-Related Peptide; Calcitonin Gene-Related Peptide Receptor Antagonists; Calcitonin Receptor-Like Protein; Carbon Tetrachloride; Cyclic GMP; Electric Stimulation; Glyburide; KATP Channels; Liver Cirrhosis; Male; Mesenteric Arteries; Muscle Cells; Oxadiazoles; Peptide Fragments; Pinacidil; Potassium Channels, Inwardly Rectifying; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptor Activity-Modifying Protein 1; Receptors, Calcitonin Gene-Related Peptide; Receptors, Drug; Sulfonylurea Receptors; Vasoconstriction; Vasodilation | 2011 |
In vitro effect of nicorandil on the carbachol-induced contraction of the lower esophageal sphincter of the rat.
Topics: Animals; Carbachol; Diazoxide; Dose-Response Relationship, Drug; Esophageal Sphincter, Lower; Glyburide; In Vitro Techniques; KATP Channels; Muscle Contraction; NG-Nitroarginine Methyl Ester; Nicorandil; Oxadiazoles; Peptides; Pinacidil; Potassium; Quinoxalines; Rats | 2016 |