pinacidil has been researched along with methylene blue in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (14.29) | 18.7374 |
1990's | 6 (85.71) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Braida, C; Holzmann, S; Kukovetz, WR; Pöch, G | 1 |
Cook, D; Stockbridge, N; Vollrath, B; Weir, B; Zhang, H | 1 |
Kamijo, T; Kido, H; Miwa, A; Nakamura, F; Sugimoto, T; Tomaru, T; Uchida, Y | 1 |
Satoh, K; Taira, N; Yamada, H | 1 |
Eltze, M | 1 |
Chiba, S; Horiuchi, A; Iwatsuki, K; Ren, LM | 1 |
Deka, DK; Mishra, SK; Raviprakash, V | 1 |
7 other study(ies) available for pinacidil and methylene blue
Article | Year |
---|---|
Pharmacological interaction experiments differentiate between glibenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil.
Topics: Animals; Benzopyrans; Cattle; Coronary Vessels; Cromakalim; Cyclic GMP; Drug Interactions; Glyburide; Guanidines; In Vitro Techniques; Methylene Blue; Molsidomine; Muscle Relaxation; Niacinamide; Nicorandil; Nitroprusside; Pinacidil; Potassium Channels; Pyrroles; Sensitivity and Specificity; Vasodilator Agents | 1992 |
Vasodilatation of canine cerebral arteries by nicorandil, pinacidil and lemakalim.
Topics: Animals; Basilar Artery; Benzopyrans; Cerebral Arteries; Cromakalim; Dogs; Female; Glyburide; Guanidines; Guanylate Cyclase; In Vitro Techniques; Male; Methylene Blue; Muscle Contraction; Muscle, Smooth, Vascular; Niacinamide; Nicorandil; Pinacidil; Potassium Channels; Pyrroles; Vasodilation; Vasodilator Agents | 1992 |
[The vasospasmolytic effects of nicorandil, cromakalim and pinacidil on 3,4-diaminopyridine-induced phasic contractions in canine coronary arteries as an experimental vasospasm model].
Topics: 4-Aminopyridine; Amifampridine; Animals; Benzopyrans; Coronary Vasospasm; Cromakalim; Disease Models, Animal; Dogs; Female; Glyburide; Guanidines; In Vitro Techniques; Ion Channel Gating; Male; Methylene Blue; Niacinamide; Nicorandil; Pinacidil; Potassium Channels; Pyrroles; Vasodilator Agents | 1992 |
Differential antagonism by glibenclamide of the relaxant effects of cromakalim, pinacidil and nicorandil on canine large coronary arteries.
Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Arteries; Benzopyrans; Coronary Vessels; Cromakalim; Dogs; Dose-Response Relationship, Drug; Female; Glyburide; Guanidines; Male; Methylene Blue; Muscle Contraction; Muscle, Smooth, Vascular; Niacinamide; Nicorandil; Nitroglycerin; Pinacidil; Potassium; Prostaglandin Endoperoxides, Synthetic; Pyrroles; Vasodilator Agents | 1991 |
Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery.
Topics: Animals; Benzopyrans; Cromakalim; Glyburide; Guanidines; Guinea Pigs; In Vitro Techniques; Male; Methylene Blue; Muscle Contraction; Muscle Relaxation; Muscle, Smooth, Vascular; Niacinamide; Nicorandil; Picolines; Pinacidil; Potassium Channels; Potassium Chloride; Pulmonary Artery; Purinones; Pyrans; Pyrroles; Tetraethylammonium Compounds | 1989 |
Effects of KRN2391, a novel vasodilator, on pancreatic exocrine secretion in anesthetized dogs.
Topics: Animals; Bicarbonates; Cyclic AMP; Cyclic GMP; Dogs; Female; Guanidines; Male; Methylene Blue; Nitroprusside; Pancreas; Pancreatic Juice; Pinacidil; Proteins; Pyridines; Secretin; Sincalide; Vasodilator Agents | 1993 |
Basal nitric oxide release differentially modulates vasodilations by pinacidil and levcromakalim in goat coronary artery.
Topics: Animals; Coronary Vessels; Cromakalim; Endothelium, Vascular; Enzyme Inhibitors; Glyburide; Goats; Guanidines; Hypoglycemic Agents; In Vitro Techniques; Methylene Blue; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Papaverine; Pinacidil; Potassium Channels; Vasodilation; Vasodilator Agents | 1998 |