pimozide has been researched along with vinblastine in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (75.00) | 29.6817 |
2010's | 1 (25.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Fischer, H; Huwyler, J; Poli, S; Schwab, D; Tabatabaei, A | 1 |
Li, Y; Li, YH; Wang, YH; Yang, L; Yang, SL | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
4 other study(ies) available for pimozide and vinblastine
Article | Year |
---|---|
Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery.
Topics: Adenosine Triphosphatases; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Cells, Cultured; Drug Evaluation, Preclinical; Fluoresceins; Fluorescent Dyes; Humans; Indicators and Reagents; Mice; Models, Molecular; Rhodamines; Species Specificity; Swine | 2003 |
Modeling K(m) values using electrotopological state: substrates for cytochrome P450 3A4-mediated metabolism.
Topics: Computational Biology; Cyclohexanols; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Molecular Structure; Principal Component Analysis; Pyrrolizidine Alkaloids; Quantitative Structure-Activity Relationship; Reproducibility of Results; Substrate Specificity; Venlafaxine Hydrochloride | 2005 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |