pimozide has been researched along with mianserin in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (10.00) | 18.7374 |
1990's | 1 (10.00) | 18.2507 |
2000's | 2 (20.00) | 29.6817 |
2010's | 6 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Andrews, PR; Craik, DJ; Martin, JL | 1 |
Dokhan, R; el Ahmad, Y; Laurent, E; Maillet, P; Ollivier, R; Talab, A; Teste, JF; Tran, G | 1 |
Topliss, JG; Yoshida, F | 1 |
Glennon, RA | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Bellera, CL; Bruno-Blanch, LE; Castro, EA; Duchowicz, PR; Goodarzi, M; Ortiz, EV; Pesce, G; Talevi, A | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Abramson, CI; Agarwal, M; Del Valle Díaz, RA; Giannoni Guzmán, M; Giray, T; Morales-Matos, C | 1 |
1 review(s) available for pimozide and mianserin
Article | Year |
---|---|
Higher-end serotonin receptors: 5-HT(5), 5-HT(6), and 5-HT(7).
Topics: Animals; Humans; Ligands; Receptors, Serotonin; Serotonin Agents; Serotonin Antagonists; Serotonin Receptor Agonists | 2003 |
9 other study(ies) available for pimozide and mianserin
Article | Year |
---|---|
Functional group contributions to drug-receptor interactions.
Topics: Animals; Calorimetry; Kinetics; Models, Biological; Protein Binding; Receptors, Cell Surface; Receptors, Drug; Structure-Activity Relationship | 1984 |
New benzocycloalkylpiperazines, potent and selective 5-HT1A receptor ligands.
Topics: Adenylyl Cyclases; Animals; Behavior, Animal; Binding, Competitive; Colforsin; Cyclic AMP; Electrophysiology; Enzyme Activation; Kinetics; Magnetic Resonance Spectroscopy; Molecular Conformation; Molecular Structure; Piperazines; Protein Binding; Rats; Rats, Wistar; Receptors, Adrenergic; Receptors, Dopamine; Receptors, Serotonin; Receptors, Serotonin, 5-HT1; Serotonin Receptor Agonists; Stereoisomerism; Structure-Activity Relationship | 1997 |
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Prediction of drug intestinal absorption by new linear and non-linear QSPR.
Topics: Humans; Intestinal Absorption; Linear Models; Molecular Conformation; Nonlinear Dynamics; Permeability; Pharmaceutical Preparations; Probability; Quantitative Structure-Activity Relationship; Thermodynamics | 2011 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay.
Topics: Animals; Avoidance Learning; Bees; Conditioning, Psychological; Dopamine; Dose-Response Relationship, Drug; Learning Curve; Male; Mianserin; Octopamine; Pimozide; Punishment; Spatial Behavior; Time Factors | 2011 |