pimozide has been researched along with fexofenadine in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (55.56) | 29.6817 |
2010's | 4 (44.44) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cavalli, A; De Ponti, F; Poluzzi, E; Recanatini, M | 1 |
Chen, XL; Hendrix, J; Kang, J; Korolev, AM; Lysenkova, LN; Miroshnikova, OV; Pearlstein, RA; Preobrazhenskaya, M; Rampe, D; Shchekotikhin, AE; Vaz, RJ | 1 |
Li, J; Rajamani, R; Reynolds, CH; Tounge, BA | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Caron, G; Ermondi, G; Visentin, S | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Sen, S; Sinha, N | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
1 review(s) available for pimozide and fexofenadine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
8 other study(ies) available for pimozide and fexofenadine
Article | Year |
---|---|
Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
Topics: Anti-Arrhythmia Agents; Cation Transport Proteins; Cluster Analysis; Databases, Factual; Ether-A-Go-Go Potassium Channels; Long QT Syndrome; Models, Molecular; Molecular Conformation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship | 2002 |
Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches.
Topics: Amino Acids, Aromatic; Cation Transport Proteins; DNA-Binding Proteins; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Imidazoles; Indoles; Inhibitory Concentration 50; Models, Molecular; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Protein Binding; Protein Conformation; Quantitative Structure-Activity Relationship; Structural Homology, Protein; Structure-Activity Relationship; Trans-Activators; Transcriptional Regulator ERG | 2003 |
A two-state homology model of the hERG K+ channel: application to ligand binding.
Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Ligands; Models, Biological; Models, Molecular; Potassium Channels, Voltage-Gated; Protein Binding; Protein Conformation | 2005 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
Topics: Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Models, Molecular; Potassium Channel Blockers; Quantitative Structure-Activity Relationship | 2009 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship | 2011 |