pimaric-acid and abietic-acid

pimaric-acid has been researched along with abietic-acid* in 5 studies

Other Studies

5 other study(ies) available for pimaric-acid and abietic-acid

ArticleYear
Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.
    Plant physiology, 2016, Volume: 171, Issue:1

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes.

    Topics: Abietanes; Amino Acid Sequence; Base Sequence; Carboxylic Acids; Cloning, Molecular; Cytochrome P-450 Enzyme System; Diterpenes; Diterpenes, Kaurane; DNA, Complementary; DNA, Plant; Escherichia coli; Gas Chromatography-Mass Spectrometry; Gene Expression; Gibberellins; Microsomes; Phenanthrenes; Phylogeny; Picea; Pinus; Plant Proteins; Resins, Plant; Saccharomyces cerevisiae; Transcriptome

2016
Tape-stripping as a method for measuring dermal exposure to resin acids during wood pellet production.
    Journal of environmental monitoring : JEM, 2008, Volume: 10, Issue:3

    The purpose of this study was to develop a sensitive and specific method for quantifying dermal exposure to the resin acids 7-oxodehydroabietic acid (7-OXO), dehydroabietic acid (DHAA), abietic acid (AA), and pimaric acid (PA). In addition the method was evaluated in occupational settings during production of wood pellets. Tape-strips were spiked with the substances to evaluate the recovery of the acids from the tape. The removal efficiency of the tape was assessed by tape-stripping a specified area on a glass plate spiked with resin acids. The recovery of the acids from human skin in vivo was evaluated by applying acids in methanol onto the skin of volunteers. Occupational dermal exposure to the resin acids was assessed by tape-stripping the skin of workers involved in the production of wood pellets. The resin acids were analyzed by liquid chromatography mass spectrometry (LC-MS). The limit of detection was 15 pg (7-OXO), 150 pg (DHAA), 285 pg (AA) and 471 pg (PA) per injection. The recovery from spiked tapes was in general 100%. The removal efficiency of the tape was 48-101%. Recovery tests from human skin in vivo showed a mean recovery of 27%. Quantifiable amounts of resin acids were observed on four different skin areas with an increase in exposure during a work shift. This study shows that occupational dermal exposure to resin acids can be assessed by tape-stripping and quantified by LC-MS.

    Topics: Abietanes; Dermis; Diterpenes; Environmental Monitoring; Gas Chromatography-Mass Spectrometry; Humans; Occupational Exposure; Occupational Health; Phenanthrenes; Resins, Plant; Sensitivity and Specificity; Skin Absorption; Workplace

2008
A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2004, Volume: 60, Issue:13

    The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

    Topics: Abietanes; Alkenes; Diterpenes; Lipids; Molecular Structure; Phenanthrenes; Pinus sylvestris; Plant Extracts; Sitosterols; Spectrophotometry, Ultraviolet; Spectrum Analysis, Raman; Vibration; Wood

2004
Reactivity of Trametes laccases with fatty and resin acids.
    Applied microbiology and biotechnology, 2001, Volume: 55, Issue:3

    Lipophilic extractives commonly referred to as wood pitch or wood resin can have a negative impact on paper machine runnability and product quality. The lipophilic extractives are composed mainly of fatty acids, resin acids, sterols, steryl esters and triglycerides. In this work, the suitability of laccases for the modification of fatty and resin acids was studied, using two model fractions. In the treatments, resin and fatty acid dispersions were treated with two different laccases, i.e. laccases from Trametes hirsuta and T. villosa. Different chromatographic methods were used to elucidate the effects of laccase treatments on the chemistry of the fatty and resin acids. Both laccases were able to modify the fatty and resin acids to some extent. In the case of fatty acids, a decrease in the amount of linoleic, oleic and pinolenic acids was observed, whereas the modification of resin acids resulted in a reduced amount of conjugated resin acids.

    Topics: Abietanes; alpha-Linolenic Acid; Carboxylic Acids; Chromatography, Gas; Chromatography, Gel; Diterpenes; Fatty Acids; Laccase; Oleic Acid; Oxidoreductases; Phenanthrenes; Polyporaceae

2001
Enzyme cytochemical responses of mussels (Mytilus edulis) to resin acid constituents of pulp mill effluents.
    Bulletin of environmental contamination and toxicology, 1999, Volume: 63, Issue:4

    Topics: Abietanes; Animals; Bivalvia; Carboxylic Acids; Digestive System; Diterpenes; Epithelial Cells; Industry; NADPH Dehydrogenase; Paper; Phenanthrenes; Resins, Plant; Water Pollutants, Chemical

1999