picrotoxin has been researched along with phenylephrine in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 6 (60.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (40.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
DiMicco, JA; Luft, FC; Wible, JH | 1 |
Inenaga, K; Kannan, H; Kasai, M; Osaka, T; Yamashita, H | 1 |
Ishii, AI; Sano, M; Terada, M | 1 |
Cools, AR; Ellenbroek, B; Gelissen, M; van den Bos, R | 1 |
Ishii, AI; Kino, H; Sano, M; Terada, M | 1 |
DiMicco, JA | 1 |
Gordienko, DV; Krivobok, GK; Pankrat'ev, DV; Talalaenko, AN; Zinkovich, II | 1 |
Brockhaus, J; Deitmer, JW; Hecker, C; Herold, S | 1 |
Chen, H; Chen, SR; Pan, HL; Yuan, WX | 1 |
Doze, VA; Hillman, KL; Lei, S; Porter, JE | 1 |
10 other study(ies) available for picrotoxin and phenylephrine
Article | Year |
---|---|
Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system.
Topics: Animals; Bicuculline; Blood Pressure; GABA Antagonists; Heart Rate; Hypothalamus; Male; Muscimol; Nitroprusside; Phenylephrine; Picrotoxin; Rats; Rats, Inbred Strains; Strychnine; Sympathetic Nervous System | 1988 |
gamma-Aminobutyric acid antagonist blocks baroreceptor-activated inhibition of neurosecretory cells in the hypothalamic paraventricular nucleus of rats.
Topics: Action Potentials; Animals; Bicuculline; GABA Antagonists; gamma-Aminobutyric Acid; Male; Neurosecretory Systems; Paraventricular Hypothalamic Nucleus; Phenylephrine; Picrotoxin; Pressoreceptors; Rats; Rats, Inbred Strains; Strychnine | 1987 |
Motility and drug susceptibility of Angiostrongylus cantonensis developing from gamma-irradiated first-stage larvae.
Topics: Angiostrongylus; Animals; Autonomic Agents; Convulsants; Dibenzylchlorethamine; Female; Gamma Rays; gamma-Aminobutyric Acid; Larva; Male; Metastrongyloidea; Movement; Phenylephrine; Physostigmine; Picrotoxin; Rats; Rats, Inbred Strains; Strychnine | 1987 |
Mesolimbic noradrenaline: specificity, stability and dose-dependency of individual-specific responses to mesolimbic injections of alpha-noradrenergic agonists.
Topics: Animals; Brain Mapping; Male; Motor Activity; Norepinephrine; Nucleus Accumbens; Oxymetazoline; Phenylephrine; Picrotoxin; Rats; Rats, Inbred Strains; Septal Nuclei; Superior Colliculi | 1987 |
Angiostrongylus cantonensis: paralysis due to avermectin B1a and ivermectin.
Topics: Adrenergic alpha-Antagonists; Alkaloids; Angiostrongylus; Animals; Anthelmintics; Bicuculline; Ivermectin; Lactones; Metastrongyloidea; Movement; Muscle Contraction; Phenylephrine; Physostigmine; Picrotoxin; Pyrantel; Quinolizines; Strychnine | 1984 |
Blockade of forebrain gamma-aminobutyric acid (GABA) receptors and reflex activation of the cardiac vagus in anesthetized cats.
Topics: Animals; Bicuculline; Blood Pressure; Brain; Cats; Female; Heart; Heart Rate; Injections, Intraventricular; Male; Muscimol; Neural Pathways; Phenylephrine; Picrotoxin; Receptors, Cell Surface; Receptors, GABA-A; Reflex; Spinal Cord; Vagus Nerve | 1982 |
The role of neurochemical mechanisms of ventromedial hypothalamus in various models of anxiety in rats.
Topics: Adrenergic Agents; Animals; Anxiety; Apomorphine; Avoidance Learning; Disease Models, Animal; Dopamine; Dopamine Agents; GABA Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Hypothalamus, Middle; Male; Memantine; Microinjections; Neurotransmitter Agents; Phenylephrine; Picrotoxin; Rats; Serotonin; Sulpiride; Yohimbine | 2001 |
alpha1-Adrenergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices.
Topics: 2-Amino-5-phosphonovalerate; Adenosine Triphosphate; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Adrenergic beta-Agonists; Animals; Animals, Newborn; Cerebellum; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; GABA Antagonists; In Vitro Techniques; Isoproterenol; Membrane Potentials; Norepinephrine; Patch-Clamp Techniques; Phentolamine; Phenylephrine; Picrotoxin; Prazosin; Purkinje Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, Adrenergic, alpha-1; Synapses; Tetrodotoxin; Time Factors | 2005 |
Stimulation of alpha(1)-adrenoceptors reduces glutamatergic synaptic input from primary afferents through GABA(A) receptors and T-type Ca(2+) channels.
Topics: Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Afferent Pathways; Amiloride; Animals; Biophysical Phenomena; Calcium Channel Blockers; Calcium Channels, T-Type; Dioxanes; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Postsynaptic Potentials; GABA Agonists; GABA Antagonists; Glutamic Acid; Male; Mibefradil; Muscimol; Patch-Clamp Techniques; Phenylephrine; Phosphinic Acids; Picrotoxin; Propanolamines; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-1; Receptors, GABA-A; Sensory Receptor Cells; Spinal Cord; Synapses | 2009 |
Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus.
Topics: Action Potentials; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Animals; Animals, Newborn; Dose-Response Relationship, Drug; Evoked Potentials; GABA Antagonists; Hippocampus; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Male; Neural Inhibition; Neurons; Organophosphorus Compounds; Patch-Clamp Techniques; Phenylephrine; Picrotoxin; Piperazines; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-1; Sodium Channel Blockers; Somatostatin; Tetrodotoxin; Time Factors | 2009 |