picromycin and desosamine

picromycin has been researched along with desosamine* in 5 studies

Other Studies

5 other study(ies) available for picromycin and desosamine

ArticleYear
Total synthesis of pikromycin.
    The Journal of organic chemistry, 2012, Jan-20, Volume: 77, Issue:2

    The total synthesis of pikromycin (6), the first isolated macrolide antibiotic, was achieved. The target macrolide was retrosynthetically divided into two parts, pikronolide (6a) (aglycon) and D-desosamine. The aglycon was synthesized using key reactions such as an asymmetric aldol reaction, Yamaguchi esterification, and ring-closing metathesis. The aglycon was coupled successfully with the trichloroacetimidate derivative of D-desosamine under Lewis acidic conditions to afford pikromycin. Narbomycin (5) was also synthesized from narbonolide (5a) under identical conditions.

    Topics: Amino Sugars; Anti-Bacterial Agents; Macrolides

2012
Biosynthesis of glycosylated derivatives of tylosin in Streptomyces venezuelae.
    Journal of microbiology and biotechnology, 2011, Volume: 21, Issue:6

    Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-Lrhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl- D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl- D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.

    Topics: Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; Biosynthetic Pathways; Biotechnology; Combinatorial Chemistry Techniques; Gene Deletion; Genetic Engineering; Glycosylation; Macrolides; Multigene Family; Polyketide Synthases; Streptomyces; Tylosin

2011
Characterization of glycosyltransferase DesVII and its auxiliary partner protein DesVIII in the methymycin/picromycin biosynthetic pathway.
    Biochemistry, 2010, Sep-21, Volume: 49, Issue:37

    The in vitro characterization of the catalytic activity of DesVII, the glycosyltransferase involved in the biosynthesis of the macrolide antibiotics methymycin, neomethymycin, narbomycin, and pikromycin in Streptomyces venezuelae, is described. DesVII is unique among glycosyltransferases in that it requires an additional protein component, DesVIII, for activity. Characterization of the metabolites produced by a S. venezuelae mutant lacking the desVIII gene confirmed that desVIII is important for the biosynthesis of glycosylated macrolides but can be replaced by at least one of the homologous genes from other pathways. The addition of recombinant DesVIII protein significantly improves the glycosylation efficiency of DesVII in the in vitro assay. When affinity-tagged DesVII and DesVIII proteins were coproduced in Escherichia coli, they formed a tight (αβ)(3) complex that is at least 10(3)-fold more active than DesVII alone. The formation of the DesVII/DesVIII complex requires coexpression of both genes in vivo and cannot be fully achieved by mixing the individual protein components in vitro. The ability of the DesVII/DesVIII system to catalyze the reverse reaction with the formation of TDP-desosamine was also demonstrated in a transglycosylation experiment. Taken together, our data suggest that DesVIII assists the folding of DesVII during protein production and remains tightly bound during catalysis. This requirement must be taken into consideration in the design of combinatorial biosynthetic experiments with new glycosylated macrolides.

    Topics: Amino Sugars; Anti-Bacterial Agents; Biosynthetic Pathways; Escherichia coli; Glycosylation; Glycosyltransferases; Macrolides; Proteins; Recombinant Proteins; Streptomyces

2010
Beta-glucosylation as a part of self-resistance mechanism in methymycin/pikromycin producing strain Streptomyces venezuelae.
    Biochemistry, 2003, Dec-23, Volume: 42, Issue:50

    In our study of the biosynthesis of D-desosamine in Streptomyces venezuelae, we have cloned and sequenced the entire desosamine biosynthetic cluster. The deduced product of one of the genes, desR, in this cluster shows high sequence homology to beta-glucosidases, which catalyze the hydrolysis of the glycosidic linkages, a function not required for the biosynthesis of desosamine. Disruption of the desR gene led to the accumulation of glucosylated methymycin/neomethymycin products, all of which are biologically inactive. It is thus conceivable that methymycin/neomethymycin may be produced as inert diglycosides, and the DesR protein is responsible for transforming these antibiotics from their dormant to their active forms. This hypothesis is supported by the fact that the translated desR gene has a leader sequence characteristic of secretory proteins, allowing it to be transported through the cell membrane and hydrolyze the modified antibiotics extracellularly to activate them. Expression of desR and biochemical characterization of the purified protein confirmed the catalytic function of this enzyme as a beta-glycosidase capable of catalyzing the hydrolysis of glucosylated methymycin/neomethymycin produced by S. venezuelae. These results provide strong evidence substantiating glycosylation/deglycosylation as a likely self-resistance mechanism of S. venezuelae. However, further experiments have suggested that such a glycosylation/deglycosylation is only a secondary self-defense mechanism in S. venezuelae, whereas modification of 23S rRNA, which is the target site for methymycin and its derivatives, by PikR1 and PikR2 is a primary self-resistance mechanism. Considering that postsynthetic glycosylation is an effective means to control the biological activity of macrolide antibiotics, the availability of macrolide glycosidases, which can be used for the activation of newly formed antibiotics that have been deliberately deactivated by engineered glycosyltransferases, may be a valuable part of an overall strategy for the development of novel antibiotics using the combinatorial biosynthetic approach.

    Topics: Amino Acid Sequence; Amino Sugars; Bacterial Proteins; Base Sequence; Catalysis; Cellulases; Cloning, Molecular; Drug Resistance, Bacterial; Gene Deletion; Gene Dosage; Genes, Bacterial; Glucosyltransferases; Glycosylation; Macrolides; Molecular Sequence Data; Mutation; Recombinant Proteins; Sequence Homology, Amino Acid; Streptomyces

2003
Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae.
    Journal of bacteriology, 2001, Volume: 183, Issue:11

    The Streptomyces venezuelae pikD gene from the pikromycin biosynthetic cluster was analyzed, and its deduced product (PikD) was found to have amino acid sequence homology with a small family of bacterial regulatory proteins. Database comparisons revealed two hypothetical domains, including an N-terminal triphosphate-binding domain and a C-terminal helix-turn-helix DNA-binding motif. Analysis of PikD was initiated by deletion of the corresponding gene (pikD) from the chromosome of S. venezuelae, resulting in complete loss of antibiotic production. Complementation by a plasmid carrying pikD restored macrolide biosynthesis, demonstrating that PikD is a positive regulator. Mutations were made in the predicted nucleotide triphosphate-binding domain, confirming the active-site amino acid residues of the Walker A and B motifs. Feeding of macrolide intermediates was carried out to gauge the points of operon control by PikD. Although the pikD mutant strain was unable to convert macrolactones (10-deoxymethynolide and narbonolide) to glycosylated products, macrolide intermediates (YC-17 and narbomycin) were hydroxylated with high efficiency. To study further the control of biosynthesis, presumed promoter regions from pik cluster loci were linked to the xylE reporter and placed in S. venezuelae wild-type and pikD mutant strains. This analysis demonstrated that PikD-mediated transcriptional regulation occurs at promoters controlling expression of pikRII, pikAI, and desI but not those controlling pikRI or pikC.

    Topics: Amino Acid Sequence; Amino Sugars; Anti-Bacterial Agents; Bacterial Proteins; DNA-Binding Proteins; Gene Deletion; Gene Expression Regulation, Bacterial; Genes, Regulator; Genetic Complementation Test; Macrolides; Molecular Sequence Data; Mutagenesis, Site-Directed; Plasmids; Promoter Regions, Genetic; Sequence Analysis, DNA; Streptomyces; Transcription Factors

2001