picromycin and 10-deoxymethynolide

picromycin has been researched along with 10-deoxymethynolide* in 5 studies

Other Studies

5 other study(ies) available for picromycin and 10-deoxymethynolide

ArticleYear
Macrolactonization to 10-deoxymethynolide catalyzed by the recombinant thioesterase of the picromycin/methymycin polyketide synthase.
    Bioorganic & medicinal chemistry letters, 2006, Jan-15, Volume: 16, Issue:2

    The recombinant thioesterase (TE) domain of the picromycin/methymycin synthase (PICS) catalyzes the macrolactonization of 3, the N-acetylcysteamine thioester of seco-10-deoxymethynolide to generate 10-deoxymethynolide (1) with high efficiency. By contrast, 4, the 7-dihydro derivative of seco-thioester 3, undergoes exclusive hydrolysis by PICS TE to seco-acid 5. The recombinant TE domain of 6-deoxyerythronolide B synthase (DEBS TE) shows the same reaction specificity as PICS TE, but with significantly lower activity.

    Topics: Catalysis; Esterases; Lactones; Macrolides; Molecular Conformation; Multienzyme Complexes; Recombinant Proteins; Stereoisomerism

2006
The hidden steps of domain skipping: macrolactone ring size determination in the pikromycin modular polyketide synthase.
    Chemistry & biology, 2002, Volume: 9, Issue:5

    The pikromycin (Pik) polyketide synthase (PKS) from Streptomyces venezuelae comprises four multifunctional polypeptides (PikAI, PikAII, PikAIII, and PikAIV). This PKS can generate 12- and 14-membered ring macrolactones (10-deoxymethynolide and narbonolide, respectively) through the activity of its terminal modules (PikAIII and PikAIV). We performed a series of experiments involving the functional replacement of PikAIV in mutant strains with homodimeric and heterodimeric PikAIV modules to investigate the details of macrolactone ring size determination. The results suggest a new and surprising mechanism by which the penultimate hexaketide chain elongation intermediate is transferred from PikAIII ACP5 to PikAIV ACP6 before release by the terminal thioesterase domain. Elucidation of this chain transfer mechanism provides important new details about alternative macrolactone ring size formation in modular PKSs and contributes to the potential for rational design of structural diversity by combinatorial biosynthesis.

    Topics: Anti-Bacterial Agents; Catalytic Domain; Dimerization; Enzyme Activation; Escherichia coli; Lactones; Macrolides; Multienzyme Complexes; Mutagenesis, Site-Directed; Plasmids; Protein Structure, Tertiary; Streptomyces; Structure-Activity Relationship

2002
The Streptomyces venezuelae pikAV gene contains a transcription unit essential for expression of enzymes involved in glycosylation of narbonolide and 10-deoxymethynolide.
    Gene, 2001, Jan-24, Volume: 263, Issue:1-2

    In Streptomyces venezuelae, four polyketide synthase (PKS) polypeptides encoded by pikAI-pikAIV are used to generate 10 and 12-membered macrocyclic structures, narbonolide and 10-deoxymethynolide. Sequence analysis suggests these genes are translationally coupled with downstream genes, pikAV (encoding a type II thioesterase), desVIII-desVI (encoding enzymes responsible for production of the final glycosylated products pikromycin, narbomycin, methymycin and neomethymycin) and desR (a resistance gene). Type II thioesterases have been suggested to have an editing function in polyketide biosynthesis and deletion of the corresponding genes often leads to decreased levels of polyketide production. Surprisingly an in-frame deletion of 687 bp of the 843 bp pikAV ORF led to a strain SC1022 that produced normal yields of polyketide products, but only in the aglycone form. Plasmid-based expression of the desVIII-VI and desR in the SC1022 strain completely restored production of glycosylated products, despite the absence of a functional pikAV gene product. Under these conditions the PikAV TEII therefore does not play an important role in polyketide biosynthesis, and its function remains an enigma. These observations also demonstrate that the region of pikAV DNA deleted in strain SC1022 contains a transcription unit essential for expression of the des genes. A sequence alignment of PikAV with members of the highly conserved type II thioesterases revealed a short divergent region at the carboxy terminus, suggesting a region of pikAV that might contain such a transcription unit. DNA containing this region of pikAV was shown to be able to increase plasmid-based expression of both crotonyl CoA reductase gene (ccr) and the erythromycin resistance gene (ermE) in S. venezuelae.

    Topics: Acyl-CoA Dehydrogenases; Amino Acid Sequence; Anti-Bacterial Agents; Bacterial Proteins; Cosmids; DNA, Recombinant; Fatty Acid Synthases; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Enzymologic; Genetic Complementation Test; Glycosylation; Lactones; Macrolides; Molecular Sequence Data; Mutation; Operon; Oxidoreductases; Sequence Deletion; Sequence Homology, Amino Acid; Streptomyces; Thiolester Hydrolases; Time Factors; Transcription, Genetic

2001
Alternative modular polyketide synthase expression controls macrolactone structure.
    Nature, 2000, Feb-03, Volume: 403, Issue:6769

    Modular polyketide synthases are giant multifunctional enzymes that catalyse the condensation of small carboxylic acids such as acetate and propionate into structurally diverse polyketides that possess a spectrum of biological activities. In a modular polyketide synthase, an enzymatic domain catalyses a specific reaction, and three to six enzymatic domains involved in a condensation-processing cycle are organized into a module. A fundamental aspect of a modular polyketide synthase is that its module arrangement linearly specifies the structure of its polyketide product. Here we report a natural example in which alternative expression of the pikromycin polyketide synthase results in the generation of two macrolactone structures. Expression of the full-length modular polyketide synthase PikAIV in Streptomyces venezuelae generates the 14-membered ring macrolactone narbonolide, whereas expression of the amino-terminal truncated form of PikAIV leads to 'skipping' of the final condensation cycle in polyketide biosynthesis to generate the 12-membered ring macrolactone 10-deoxymethynolide. Our findings provide insight into the structure and function of modular polyketide synthases, as well as a new set of tools to generate structural diversity in polyketide natural products.

    Topics: Anti-Bacterial Agents; Blotting, Western; Lactones; Macrolides; Multienzyme Complexes; Mutagenesis, Site-Directed; Protein Conformation; Streptomyces

2000
Mechanisms of molecular recognition in the pikromycin polyketide synthase.
    Chemistry & biology, 2000, Volume: 7, Issue:12

    Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide.. S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV.. Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.

    Topics: Anti-Bacterial Agents; Dimerization; Lactones; Macrolides; Molecular Structure; Multienzyme Complexes; Mutation; Protein Structure, Tertiary; Protein Subunits; Recombinant Fusion Proteins; Streptomyces; Substrate Specificity

2000