picoxystrobin and azoxystrobin

picoxystrobin has been researched along with azoxystrobin* in 4 studies

Other Studies

4 other study(ies) available for picoxystrobin and azoxystrobin

ArticleYear
Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio).
    Chemosphere, 2018, Volume: 207

    Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144 h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96 h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC

    Topics: Animals; Embryonic Development; Female; Fungicides, Industrial; Liver; Male; Oxidative Stress; Pyrimidines; Strobilurins; Water Pollutants, Chemical; Zebrafish

2018
Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: A promising partnership.
    Journal of chromatography. A, 2015, Dec-24, Volume: 1426

    The extreme specificity of immunoaffinity chromatography (IAC) columns coupled to the high sensitivity of ion mobility spectrometry (IMS) measurements makes this combination really useful for rapid, selective, and sensitive determination of a high variety of analytes in different samples. The capabilities of the IAC-IMS coupling have been highlighted under three different scenarios: (i) multiclass residue analysis using a single IAC column, (ii) multiclass residue analysis using stacked IAC columns, and (iii) isomer analysis. In the first case, the determination of three strobilurin fungicides - azoxystrobin, picoxystrobin, and pyraclostrobin - in water and strawberry juice was considered, obtaining limits of quantification (LOQs) from 11 to 63μgL(-1). Recoveries from 96 to 106% for water, and from 67 to 104% for strawberry juice were obtained. In the second case, anilinopyrimidine compounds, including two analytes with similar drift time, were selectively retained in different IAC columns and analyzed after independent elution in commercial wine samples by IMS. LOQ values of 16, 14 and 12μgL(-1) were obtained for pyrimethanil, mepanipyrim, and cyprodinil, respectively. The obtained recoveries for wine samples spiked with 25 and 100μgL(-1) were from 82 to 123%. Additionally, the stacked IAC columns concept was applied to the separation of Z and E isomers of azoxystrobin that were selectively retained in specific IAC columns and quantified by IMS. Recoveries between 91 and 94% were obtained for both isomers in water samples.

    Topics: Acrylates; Carbamates; Chromatography, Affinity; Fragaria; Fruit and Vegetable Juices; Fungicides, Industrial; Methacrylates; Pyrazoles; Pyridines; Pyrimidines; Sensitivity and Specificity; Stereoisomerism; Strobilurins; Water; Wine

2015
Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquid-liquid microextraction coupled with gas chromatography.
    Journal of separation science, 2014, Volume: 37, Issue:7

    The simultaneous determination of four strobilurin fungicides (picoxystrobin, kresoxim-methyl, trifloxystrobin, and azoxystrobin) in cotton seed by combining acetonitrile extraction and dispersive liquid-liquid microextraction was developed prior to GC with electron capture detection. Several factors, including the type and volume of the extraction and dispersive solvents, extraction condition and time, and salt addition, were optimized. The analytes were extracted with acetonitrile from cotton seed and the clean-up was carried out by primary secondary amine. Afterwards, 60 μL of n-hexane/toluene (1:1, v/v) with a lower density than water was mixed with 1 mL of the acetonitrile extract, then the mixture was injected into 7 mL of distilled water. A 0.1 mL pipette was used to collect a few microliters of n-hexane/toluene from the top of the aqueous solution. The enrichment factors of the analytes ranged from 36 to 67. The LODs were in the range of 0.1 × 10(-3) -2 × 10(-3) mg/kg. The relative recoveries varied from 87.7 to 95.2% with RSDs of 4.1-8.5% for the four fungicides. The good performance of the method, compared with the conventional pretreatments, has demonstrated it is suitable for determining low concentrations of strobilurin fungicide residues in cotton seed.

    Topics: Acetates; Acetonitriles; Acrylates; Chromatography, Gas; Fungicides, Industrial; Gossypium; Imines; Liquid Phase Microextraction; Methacrylates; Phenylacetates; Pyridines; Pyrimidines; Seeds; Strobilurins

2014
[Determination of seven strobilurin fungicide residues in Chinese herbs by liquid chromatography-tandem mass spectrometry coupled with solid phase extraction].
    Se pu = Chinese journal of chromatography, 2013, Volume: 31, Issue:3

    An LC-MS/MS method was developed for the simultaneously determination of seven strobilurin fungicide residues in Chinese herbs. The strobilurin fungicides include Z-metominostrobin, kresoxim-methyl, dimoxystrobin, picoxystrobin, pyraclostrobin, azoxystrobin and trifloxystrobin. The sample was extracted with ethyl acetate and cleaned-up by an amino SPE column. The seven strobilurin fungicide residues were separated on a C18 column with gradient elution of 1.0 per thousand formic acid and methanol as mobile phases, and detected by ESI-MS in positive ion and selective reaction monitoring (SRM) mode. External standard method was used to the quantification with good linear relationships (r > or = 0. 996). The LOQs were 2 micro g/kg for dimoxystrobin, picoxystrobin and trifloxystrobin, 4 mciro g/kg for pyraclostrobin and azoxystrobin, 10 micro g/kg for Z-metominostrobin and kresoxim-methyl. The recoveries were from 60.4% to 110% with the RSDs between 1.2% and 17%. The developed method is suitable for the determination and confirmation of the seven strobilurin fungicide residues in the three of Eight Zhes ( Ophiopogon japonicus (Thunb.), Scrophularia ningpoensis Hemsl. and Corydalis yanhusuo W T Wang).

    Topics: Acetates; Acrylates; Carbamates; Chromatography, Liquid; Drug Contamination; Drug Residues; Drugs, Chinese Herbal; Fungicides, Industrial; Imines; Methacrylates; Phenylacetates; Pyrazoles; Pyridines; Pyrimidines; Strobilurins; Tandem Mass Spectrometry

2013