pi103 has been researched along with dactolisib* in 4 studies
1 review(s) available for pi103 and dactolisib
Article | Year |
---|---|
Current development of the second generation of mTOR inhibitors as anticancer agents.
The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, acts as a "master switch" for cellular anabolic and catabolic processes, regulating the rate of cell growth and proliferation. Dysregulation of the mTOR signaling pathway occurs frequently in a variety of human tumors, and thus, mTOR has emerged as an important target for the design of anticancer agents. mTOR is found in two distinct multiprotein complexes within cells, mTORC1 and mTORC2. These two complexes consist of unique mTOR-interacting proteins and are regulated by different mechanisms. Enormous advances have been made in the development of drugs known as mTOR inhibitors. Rapamycin, the first defined inhibitor of mTOR, showed effectiveness as an anticancer agent in various preclinical models. Rapamycin analogues (rapalogs) with better pharmacologic properties have been developed. However, the clinical success of rapalogs has been limited to a few types of cancer. The discovery that mTORC2 directly phosphorylates Akt, an important survival kinase, adds new insight into the role of mTORC2 in cancer. This novel finding prompted efforts to develop the second generation of mTOR inhibitors that are able to target both mTORC1 and mTORC2. Here, we review the recent advances in the mTOR field and focus specifically on the current development of the second generation of mTOR inhibitors as anticancer agents. Topics: Antineoplastic Agents; Cell Proliferation; Furans; Humans; Imidazoles; Indoles; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Morpholines; Multiprotein Complexes; Naphthyridines; Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Purines; Pyridines; Pyrimidines; Quinolines; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases | 2012 |
3 other study(ies) available for pi103 and dactolisib
Article | Year |
---|---|
Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo.
In in vitro studies class-I PI3Ks (phosphoinositide 3-kinases), class-II PI3Ks and mTOR (mammalian target of rapamycin) have all been described as having roles in the regulation of glucose metabolism. The relative role each plays in the normal signalling processes regulating glucose metabolism in vivo is less clear. Knockout and knockin mouse models have provided some evidence that the class-I PI3K isoforms p110α, p110β, and to a lesser extent p110γ, are necessary for processes regulating glucose metabolism and appetite. However, in these models the PI3K activity is chronically reduced. Therefore we analysed the effects of acutely inhibiting PI3K isoforms alone, or PI3K and mTOR, on glucose metabolism and food intake. In the present study impairments in glucose tolerance, insulin tolerance and increased hepatic glucose output were observed in mice treated with the pan-PI3K/mTOR inhibitors PI-103 and NVP-BEZ235. The finding that ZSTK474 has similar effects indicates that these effects are due to inhibition of PI3K rather than mTOR. The p110α-selective inhibitors PIK75 and A66 also induced these phenotypes, but inhibitors of p110β, p110δ or p110γ induced only minor effects. These drugs caused no significant effects on BMR (basal metabolic rate), O2 consumption or water intake, but BEZ235, PI-103 and PIK75 did cause a small reduction in food consumption. Surprisingly, pan-PI3K inhibitors or p110α inhibitors caused reductions in animal movement, although the cause of this is not clear. Taken together these studies provide pharmacological evidence to support a pre-eminent role for the p110α isoform of PI3K in pathways acutely regulating glucose metabolism. Topics: Animals; Class I Phosphatidylinositol 3-Kinases; Eating; Enzyme Inhibitors; Furans; Glucose; Hydrazones; Imidazoles; Isoenzymes; Male; Mice; Motor Activity; Phosphoinositide-3 Kinase Inhibitors; Pyridines; Pyrimidines; Quinolines; Sulfonamides; TOR Serine-Threonine Kinases | 2012 |
Akt and autophagy cooperate to promote survival of drug-resistant glioma.
Although the phosphatidylinositol 3-kinase to Akt to mammalian target of rapamycin (PI3K-Akt-mTOR) pathway promotes survival signaling, inhibitors of PI3K and mTOR induce minimal cell death in PTEN (phosphatase and tensin homolog deleted from chromosome 10) mutant glioma. Here, we show that the dual PI3K-mTOR inhibitor PI-103 induces autophagy in a form of glioma that is resistant to therapy. Inhibitors of autophagosome maturation cooperated with PI-103 to induce apoptosis through the mitochondrial pathway, indicating that the cellular self-digestion process of autophagy acted as a survival signal in this setting. Not all inhibitors of mTOR synergized with inhibitors of autophagy. Rapamycin delivered alone induced autophagy, yet cells survived inhibition of autophagosome maturation because of rapamycin-mediated activation of Akt. In contrast, adenosine 5'-triphosphate-competitive inhibitors of mTOR stimulated autophagy more potently than did rapamycin, with inhibition of mTOR complexes 1 and 2 contributing independently to induction of autophagy. We show that combined inhibition of PI3K and mTOR, which activates autophagy without activating Akt, cooperated with inhibition of autophagy to cause glioma cells to undergo apoptosis. Moreover, the PI3K-mTOR inhibitor NVP-BEZ235, which is in clinical use, synergized with the lysosomotropic inhibitor of autophagy, chloroquine, another agent in clinical use, to induce apoptosis in glioma xenografts in vivo, providing a therapeutic approach potentially translatable to humans. Topics: Animals; Autophagy; Cell Line, Tumor; Chloroquine; Drug Synergism; Flow Cytometry; Furans; Glioma; Histological Techniques; Humans; Imidazoles; Immunoblotting; Immunohistochemistry; Mice; Mice, Inbred BALB C; Microscopy, Confocal; Mitochondria; Mutation; Oncogene Protein v-akt; Phosphoinositide-3 Kinase Inhibitors; PTEN Phosphohydrolase; Pyridines; Pyrimidines; Quinolines; Sirolimus; TOR Serine-Threonine Kinases; Transplantation, Heterologous | 2010 |
Effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor, on DNA-dependent protein kinase.
Phosphatidylinositol 3-kinase (PI3K) has been implicated in a variety of diseases including cancer. A number of PI3K inhibitors have recently been developed for use in cancer therapy. ZSTK474 is a highly promising antitumor agent targeting PI3K. We previously reported that ZSTK474 showed potent inhibition against four class I PI3K isoforms but not against 140 protein kinases. However, whether ZSTK474 inhibits DNA-dependent protein kinase (DNA-PK), which is structurally similar to PI3K, remains unknown. To investigate the inhibition of DNA-PK, we developed a new DNA-PK assay method using Kinase-Glo. The inhibition activity of ZSTK474 against DNA-PK was determined, and shown to be far weaker compared with that observed against PI3K. The inhibition selectivity of ZSTK474 for PI3K over DNA-PK was significantly higher than other PI3K inhibitors, namely NVP-BEZ235, PI-103 and LY294002. These results indicated that ZSTK474 was the most specific agent among these PI3K inhibitors. Topics: Chromones; DNA-Activated Protein Kinase; Enzyme Inhibitors; Furans; Imidazoles; Morpholines; Phosphoinositide-3 Kinase Inhibitors; Pyridines; Pyrimidines; Quinolines; Structure-Activity Relationship; Substrate Specificity; Triazines | 2009 |