phytosterols has been researched along with sinapinic-acid* in 3 studies
3 other study(ies) available for phytosterols and sinapinic-acid
Article | Year |
---|---|
Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation using different combinations of wall materials and crosslinkers.
Intake of omega-3 fatty acids and phytosterols aids in the reduction of cholesterol and serum triglycerides. However, both fatty acids and phytosterols are susceptible to oxidation. This work coencapsulated echium oil (source of stearidonic and alpha-linolenic fatty acids) and beta-sitosterol (phytosterol) by complex coacervation using different combinations of wall materials, and sinapic acid (SA) and transglutaminase as crosslinkers. High encapsulation yields were obtained (29-93% for SA; 68-100% for the mixture of oil and phytosterols) and retention of 49-99% and 16% for encapsulated and free SA, at 30 days-storage. Treatment with gelatin-arabic gum and 0.075 g SA/g gelatin showed the best results: 0.07 mg MDA/g capsule, and retention of 96, 90 and 74% for alpha-linolenic, stearidonic acid and beta-sitosterol at 30 days of storage, respectively. Thus, coencapsulation of echium oil and phytosterol using SA as the crosslinker was possible, obtaining effective vehicles for protection and application of these compounds in foods. Topics: Coumaric Acids; Cross-Linking Reagents; Echium; Fatty Acids, Omega-3; Phytosterols; Plant Oils; Seeds; Sitosterols | 2018 |
Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid.
The consumption of omega-3 fatty acids and phytosterol promotes the reduction of cholesterol and triacylglycerol levels. However, such compounds are susceptible to oxidation, which hampers their application. The objective of this work was to coencapsulate echium oil, phytosterols and sinapic acid (crosslinker/antioxidant), and incorporate the obtained microcapsules into yogurt. The microcapsules were evaluated for particle size, accelerated oxidation by Rancimat, and simulation of gastric/intestinal release. The yogurts were assessed for morphology, pH, titratable acidity, color, rheology and sensory analysis. The microcapsules (13-42μm) promoted protection against oil oxidation (induction time of 54.96h). The yogurt containing microcapsules, presented a pH range from 3.89 to 4.17 and titratable acidity range from 0.798 to 0.826%, with good sensorial acceptance. It was possible to apply the microcapsules in yogurt, without compromising the rheological properties and physicochemical stability of the product. Topics: Coumaric Acids; Echium; Fatty Acids, Omega-3; Humans; Phytosterols; Yogurt | 2017 |
Phytosteryl sinapates and vanillates: chemoenzymatic synthesis and antioxidant capacity assessment.
Phytosterols and their derivatives have attracted much attention because of their health benefits to humans and are widely used in food, pharmaceuticals, and cosmetics in the past decades. While most of the research has focused on free phytosterols and phytosteryl esters of fatty acids, few researches reported on phytosteryl phenolates, the esters of phytosterols with phenolic acids. Two novel group phytosteryl phenolates, namely phytosteryl sinapates and vanillates, were successfully chemoenzymatically synthesised in this work and their structures confirmed. Fourier transform infrared (FTIR) and high performance chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) using atmospheric pressure chemical ionisation (APCI) under both positive and negative ion modes were employed for this purpose. High antioxidant capacity of phytosteryl sinapates was observed using both oxygen radical absorbance capacity (ORAC) assay and cooked ground meat model system. Although phytosteryl vanillates showed lower antioxidant capacity than phytosteryl sinapates, they were stronger antioxidants than vanillic acid and vinyl vanillate in both assays employed. Conjugation of phytosterols with sinapic or vanillic acid rendered higher antioxidant capacity. Further studies on health benefits of phytosteryl sinapates and vanillates are necessary. Topics: Antioxidants; Chromatography, High Pressure Liquid; Coumaric Acids; Phytosterols; Spectroscopy, Fourier Transform Infrared; Tandem Mass Spectrometry; Vanillic Acid | 2013 |