phytosterols has been researched along with octanoic-acid* in 2 studies
2 other study(ies) available for phytosterols and octanoic-acid
Article | Year |
---|---|
Physicochemical Characterization of Yellow Cake Prepared with Structured Lipid Oleogels.
Oleogels were produced using a phytosterol blend of β-sitosterol/γ-oryzanol or a blend of sucrose stearate/ascorbyl palmitate (SSAP) as oleogelators. Four lipid phases were compared in oleogel formation for each oleogelator blend: menhaden oil, structured lipid (SL) of menhaden oil and 30 mol% caprylic acid (SL-C), SL of menhaden oil and 20 mol% stearic acid (SL-S), and SL of menhaden oil and 14 mol% each of caprylic and stearic acid (SL-CS). All SLs were produced enzymatically using a recombinant lipase from Candida antarctica as the biocatalyst. Menhaden oil, SL, phytosterol, or SSAP oleogels were evaluated as alternatives to shortening in the preparation of yellow cake in terms of batter and cake physicochemical properties. The shortening, phytosterol, and SSAP oleogel batters exhibited statistically similar specific gravities (0.85). The shortening, and menhaden oil phytosterol and SSAP oleogel batters, exhibited similar Power-Law values (n: 0.78, k: 31 Pa s Topics: Ascorbic Acid; Caprylates; Fat Substitutes; Fatty Acids; Fish Oils; Food Analysis; Food Handling; Gels; Organic Chemicals; Phenylpropionates; Phytosterols; Sitosterols; Stearic Acids; Sucrose | 2019 |
Characteristics of structured lipid prepared by lipase-catalyzed acidolysis of roasted sesame oil and caprylic acid in a bench-scale continuous packed bed reactor.
Structured lipid (SL) was prepared from roasted sesame oil and caprylic acid (CA) by Rhizomucor miehei lipase-catalyzed acidolysis in a bench-scale continuous packed bed reactor. Total incorporation and acyl migration of CA in the SL were 42.5 and 3.1 mol %, respectively, and the half-life of the lipase was 19.2 days. The SL displayed different physical and chemical properties, less saturated dark brown color, lower viscosity, lower melting and crystallization temperature ranges, higher melting and crystallization enthalpies, higher smoke point, higher saponification value, and lower iodine value, in comparison to those of unmodified sesame oil. The oxidative stability of purified SL was lower than that of sesame oil. There were no differences in the contents of unsaponifiables including tocopherols and phytosterols. However, total sesame lignans content was decreased in SL due to the loss of sesamol when compared to sesame oil. Most of the 70 volatiles present in roasted sesame oil were removed from SL during short-path distillation of SL. These results indicate that the characteristics of SL are different from those of original sesame oil in several aspects except for the contents of tocopherols and phytosterols. Topics: Benzodioxoles; Bioreactors; Caprylates; Crystallization; Drug Stability; Hot Temperature; Hydrogen-Ion Concentration; Lignans; Lipase; Lipids; Oxidation-Reduction; Phenols; Phytosterols; Rhizomucor; Sesame Oil; Thermodynamics; Tocopherols | 2006 |